1.8 KiB
1.8 KiB
| layout | title | nav_order |
|---|---|---|
| default | LLM Integration | 3 |
Call LLM
For your LLM application, implement a function to call LLMs yourself.
You can ask an assistant like ChatGPT or Claude to generate an example.
For instance, asking ChatGPT to "implement a call_llm function that takes a prompt and returns the LLM response" gives:
def call_llm(prompt):
from openai import OpenAI
# Set the OpenAI API key (use environment variables, etc.)
client = OpenAI(api_key="YOUR_API_KEY_HERE")
r = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}]
)
return r.choices[0].message.content
# Example usage
call_llm("How are you?")
Improvements
You can enhance the function as needed. Examples:
- Handle chat history:
def call_llm(messages):
from openai import OpenAI
client = OpenAI(api_key="YOUR_API_KEY_HERE")
r = client.chat.completions.create(
model="gpt-4",
messages=messages
)
return r.choices[0].message.content
- Add in-memory caching:
from functools import lru_cache
@lru_cache(maxsize=1000)
def call_llm(prompt):
# Your implementation here
pass
- Enable logging:
def call_llm(prompt):
import logging
logging.info(f"Prompt: {prompt}")
response = ...
logging.info(f"Response: {response}")
return response
Why not provide an LLM call function?
I believe it is a bad practice to provide LLM-specific implementations in a general framework:
- LLM APIs change frequently. Hardcoding them makes maintenance difficult.
- You may need flexibility to switch vendors, use fine-tuned models, or deploy local LLMs.
- You may need optimizations like prompt caching, request batching, or response streaming.