pocketflow/cookbook/pocketflow-code-generator/README.md

161 lines
5.7 KiB
Markdown

# PocketFlow Code Generator
An intelligent AI system that takes LeetCode-style coding problems and automatically generates comprehensive test cases, implements solutions, and iteratively improves them until all tests pass.
## Features
- **Automatic Test Case Generation**: Creates diverse test cases including edge cases
- **Intelligent Code Implementation**: Generates `run_code` functions with proper algorithms
- **Iterative Improvement**: Analyzes failures and decides whether to revise tests or code
- **Rich Debugging Output**: Detailed progress tracking and validation
## Getting Started
1. Install required dependencies:
```bash
pip install -r requirements.txt
```
2. Set up your Anthropic API key:
```bash
export ANTHROPIC_API_KEY="your-api-key-here"
```
Test your API key is working:
```bash
python utils/call_llm.py
```
3. Run the code generator with the default Two Sum problem:
```bash
python main.py
```
4. Or provide your own problem:
```bash
python main.py "Reverse a linked list. Given the head of a singly linked list, reverse the list and return the reversed list."
```
## How It Works
The system follows an intelligent workflow combining **Agent** and **Workflow** design patterns:
```mermaid
flowchart TD
start[Problem Input] --> generateTests[Generate Test Cases]
generateTests --> implement[Implement Function]
implement --> runTests[Run Tests - Batch]
runTests --> decision{All Tests Pass?}
decision -->|Yes| success[Success!]
decision -->|No| revise[Revise - Agent Decision]
revise --> runTests
decision -->|Max Iterations| maxIter[Max Iterations Reached]
```
### The Process
1. **GenerateTestCases**: Creates 5-7 comprehensive test cases from problem description
2. **ImplementFunction**: Writes a `run_code` function based on problem and test cases
3. **RunTests**: Executes function against all test cases using batch processing
4. **Revise**: Analyzes failures and makes intelligent decisions to revise test cases and/or function code
5. **Loop**: Continues until all tests pass or max iterations reached
## Sample Output
Here's what you'll see when running the Two Sum example:
```
Starting PocketFlow Code Generator...
=== Generated 7 Test Cases ===
1. Basic case - solution at beginning
input: {'nums': [2, 7, 11, 15], 'target': 9}
expected: [0, 1]
2. Basic case - solution in middle
input: {'nums': [3, 2, 4], 'target': 6}
expected: [1, 2]
3. Edge case - minimum array size with duplicates
input: {'nums': [3, 3], 'target': 6}
expected: [0, 1]
4. Case with negative numbers
input: {'nums': [-1, -2, -3, -4, -5], 'target': -8}
expected: [2, 4]
5. Case with zero and negative target
input: {'nums': [0, 4, 3, 0], 'target': 0}
expected: [0, 3]
6. Case with solution at the end
input: {'nums': [1, 2, 3, 4, 5, 6], 'target': 11}
expected: [4, 5]
7. Larger array case
input: {'nums': [5, 75, 25, 45, 42, 2, 11, 9, 55, 12], 'target': 14}
expected: [2, 6]
=== Implemented Function ===
def run_code(nums, target):
# Dictionary to store number -> index mapping
num_to_index = {}
# Iterate through the array
for i, num in enumerate(nums):
# Calculate what number we need to reach the target
complement = target - num
# Check if the complement exists in our map
if complement in num_to_index:
# Found the pair! Return indices
return [num_to_index[complement], i]
# Store current number and its index
num_to_index[num] = i
# Should never reach here given problem constraints
return []
=== Test Results: 6/7 Passed ===
Failed tests:
1. Larger array case:
error: Expected [2, 6], got [0, 7]
expected: [2, 6]
=== Revisions (Iteration 1) ===
Revising test cases:
Test 7: 'Larger array case' -> 'Larger array case'
old input: {'nums': [5, 75, 25, 45, 42, 2, 11, 9, 55, 12], 'target': 14}
new input: {'nums': [5, 75, 25, 45, 42, 2, 11, 9, 55, 12], 'target': 14}
old expected: [2, 6]
new expected: [0, 7]
=== Test Results: 7/7 Passed ===
```
## Key Features
### Intelligent Decision Making
The **Revise** node acts as an agent that analyzes test failures and decides whether to:
- Fix test cases (if they have incorrect expected outputs)
- Fix the function implementation (if the logic is wrong)
- Or both
### Structured Output with Validation
All LLM interactions use YAML format with:
- **Reasoning fields**: Transparent decision-making process
- **Validation asserts**: Ensures outputs match expected structure
- **Rich debugging**: Comprehensive logging of all steps
### Batch Processing
The **RunTests** node uses PocketFlow's BatchNode to efficiently test the function against all test cases in parallel.
## Files
- [`main.py`](./main.py): Entry point with sample Two Sum problem
- [`flow.py`](./flow.py): Connects all nodes into the complete workflow
- [`nodes.py`](./nodes.py): Core logic nodes with validation and debugging
- [`utils/call_llm.py`](./utils/call_llm.py): Anthropic Claude API wrapper
- [`utils/code_executor.py`](./utils/code_executor.py): Safe Python code execution utility
- [`doc/design.md`](./doc/design.md): Detailed system design documentation
## Design Patterns Used
- **[Workflow](https://the-pocket.github.io/PocketFlow/design_pattern/workflow.html)**: Sequential steps of test generation → coding → testing
- **[Agent](https://the-pocket.github.io/PocketFlow/design_pattern/agent.html)**: Intelligent decision-making when tests fail
- **[Batch](https://the-pocket.github.io/PocketFlow/core_abstraction/batch.html)**: Efficient parallel test execution
- **[Structured Output](https://the-pocket.github.io/PocketFlow/design_pattern/structure.html)**: YAML validation for reliable LLM outputs