pocketflow/docs/batch.md

88 lines
3.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
layout: default
title: "Batch"
parent: "Core Abstraction"
nav_order: 4
---
# Batch
**Batch** makes it easier to handle large inputs in one Node or **rerun** a Flow multiple times. Handy for:
- **Chunk-based** processing (e.g., splitting large texts).
- **Multi-file** processing.
- **Iterating** over lists of params (e.g., user queries, documents, URLs).
## 1. BatchNode
A **BatchNode** extends `Node` but changes `prep()` and `exec()`:
- **`prep(shared)`**: returns an **iterable** (e.g., list, generator).
- **`exec(item)`**: called **once** per item in that iterable.
- **`post(shared, prep_res, exec_res_list)`**: after all items are processed, receives a **list** of results (`exec_res_list`) and returns an **Action**.
### Example: Summarize a Large File
``python
class MapSummaries(BatchNode):
def prep(self, shared):
# Suppose we have a big file; chunk it
content = shared["data"].get("large_text.txt", "")
chunk_size = 10000
chunks = [content[i:i+chunk_size] for i in range(0, len(content), chunk_size)]
return chunks
def exec(self, chunk):
prompt = f"Summarize this chunk in 10 words: {chunk}"
summary = call_llm(prompt)
return summary
def post(self, shared, prep_res, exec_res_list):
combined = "\n".join(exec_res_list)
shared["summary"]["large_text.txt"] = combined
return "default"
map_summaries = MapSummaries()
flow = Flow(start=map_summaries)
flow.run(shared)
``python
---
## 2. BatchFlow
.
A **BatchFlow** runs a **Flow** multiple times, each time with different `params`. Think of it as a loop that replays the Flow for each parameter set.
### Example: Summarize Many Files
``python
class SummarizeAllFiles(BatchFlow):
def prep(self, shared):
# Return a list of param dicts (one per file)
filenames = list(shared["data"].keys()) # e.g., ["file1.txt", "file2.txt", ...]
return [{"filename": fn} for fn in filenames]
# Suppose we have a per-file Flow (e.g., load_file >> summarize >> reduce):
summarize_file = SummarizeFile(start=load_file)
# Wrap that flow into a BatchFlow:
summarize_all_files = SummarizeAllFiles(start=summarize_file)
summarize_all_files.run(shared)
``python
**Under the Hood**:
1. `prep(shared)` returns a list of param dicts—e.g., `[{filename: "file1.txt"}, {filename: "file2.txt"}, ...]`.
2. The **BatchFlow** loops through each dict. For each one:
- It merges the dict with the BatchFlows own `params`.
- It calls `flow.run(shared)` using the merged result.
3. This means the sub-Flow is run **repeatedly**, once for every param dict.
---
### Nested or Multi-Level Batches
You can nest a **BatchFlow** in another **BatchFlow**. For instance:
- **Outer** batch: returns a list of diretory param dicts (e.g., `{"directory": "/pathA"}`, `{"directory": "/pathB"}`, ...).
- **Inner** batch: returning a list of per-file param dicts.
At each level, **BatchFlow** merges its own param dict with the parents. By the time you reach the **innermost** node, the final `params` is the merged result of **all** parents in the chain. This way, a nested structure can keep track of the entire context (e.g., directory + file name) at once.