140 lines
4.3 KiB
Markdown
140 lines
4.3 KiB
Markdown
---
|
|
layout: default
|
|
title: "Viz and Debug"
|
|
parent: "Utility Function"
|
|
nav_order: 2
|
|
---
|
|
|
|
# Visualization and Debugging
|
|
|
|
Similar to LLM wrappers, we **don't** provide built-in visualization and debugging. Here, we recommend some *minimal* (and incomplete) implementations These examples can serve as a starting point for your own tooling.
|
|
|
|
## 1. Visualization with Mermaid
|
|
|
|
This code recursively traverses the nested graph, assigns unique IDs to each node, and treats Flow nodes as subgraphs to generate Mermaid syntax for a hierarchical visualization.
|
|
|
|
{% raw %}
|
|
```python
|
|
def build_mermaid(start):
|
|
ids, visited, lines = {}, set(), ["graph LR"]
|
|
ctr = 1
|
|
def get_id(n):
|
|
nonlocal ctr
|
|
return ids[n] if n in ids else (ids.setdefault(n, f"N{ctr}"), (ctr := ctr + 1))[0]
|
|
def link(a, b):
|
|
lines.append(f" {a} --> {b}")
|
|
def walk(node, parent=None):
|
|
if node in visited:
|
|
return parent and link(parent, get_id(node))
|
|
visited.add(node)
|
|
if isinstance(node, Flow):
|
|
node.start and parent and link(parent, get_id(node.start))
|
|
lines.append(f"\n subgraph sub_flow_{get_id(node)}[{type(node).__name__}]")
|
|
node.start and walk(node.start)
|
|
for nxt in node.successors.values():
|
|
node.start and walk(nxt, get_id(node.start)) or (parent and link(parent, get_id(nxt))) or walk(nxt)
|
|
lines.append(" end\n")
|
|
else:
|
|
lines.append(f" {(nid := get_id(node))}['{type(node).__name__}']")
|
|
parent and link(parent, nid)
|
|
[walk(nxt, nid) for nxt in node.successors.values()]
|
|
walk(start)
|
|
return "\n".join(lines)
|
|
```
|
|
{% endraw %}
|
|
|
|
|
|
For example, suppose we have a complex Flow for data science:
|
|
|
|
```python
|
|
class DataPrepBatchNode(BatchNode):
|
|
def prep(self,shared): return []
|
|
class ValidateDataNode(Node): pass
|
|
class FeatureExtractionNode(Node): pass
|
|
class TrainModelNode(Node): pass
|
|
class EvaluateModelNode(Node): pass
|
|
class ModelFlow(Flow): pass
|
|
class DataScienceFlow(Flow):pass
|
|
|
|
feature_node = FeatureExtractionNode()
|
|
train_node = TrainModelNode()
|
|
evaluate_node = EvaluateModelNode()
|
|
feature_node >> train_node >> evaluate_node
|
|
model_flow = ModelFlow(start=feature_node)
|
|
data_prep_node = DataPrepBatchNode()
|
|
validate_node = ValidateDataNode()
|
|
data_prep_node >> validate_node >> model_flow
|
|
data_science_flow = DataScienceFlow(start=data_prep_node)
|
|
result = build_mermaid(start=data_science_flow)
|
|
```
|
|
|
|
The code generates a Mermaid diagram:
|
|
|
|
```mermaid
|
|
graph LR
|
|
subgraph sub_flow_N1[DataScienceFlow]
|
|
N2['DataPrepBatchNode']
|
|
N3['ValidateDataNode']
|
|
N2 --> N3
|
|
N3 --> N4
|
|
|
|
subgraph sub_flow_N5[ModelFlow]
|
|
N4['FeatureExtractionNode']
|
|
N6['TrainModelNode']
|
|
N4 --> N6
|
|
N7['EvaluateModelNode']
|
|
N6 --> N7
|
|
end
|
|
|
|
end
|
|
```
|
|
|
|
## 2. Call Stack Debugging
|
|
|
|
It would be useful to print the Node call stacks for debugging. This can be achieved by inspecting the runtime call stack:
|
|
|
|
```python
|
|
import inspect
|
|
|
|
def get_node_call_stack():
|
|
stack = inspect.stack()
|
|
node_names = []
|
|
seen_ids = set()
|
|
for frame_info in stack[1:]:
|
|
local_vars = frame_info.frame.f_locals
|
|
if 'self' in local_vars:
|
|
caller_self = local_vars['self']
|
|
if isinstance(caller_self, BaseNode) and id(caller_self) not in seen_ids:
|
|
seen_ids.add(id(caller_self))
|
|
node_names.append(type(caller_self).__name__)
|
|
return node_names
|
|
```
|
|
|
|
For example, suppose we have a complex Flow for data science:
|
|
|
|
```python
|
|
class DataPrepBatchNode(BatchNode):
|
|
def prep(self, shared): return []
|
|
class ValidateDataNode(Node): pass
|
|
class FeatureExtractionNode(Node): pass
|
|
class TrainModelNode(Node): pass
|
|
class EvaluateModelNode(Node):
|
|
def prep(self, shared):
|
|
stack = get_node_call_stack()
|
|
print("Call stack:", stack)
|
|
class ModelFlow(Flow): pass
|
|
class DataScienceFlow(Flow):pass
|
|
|
|
feature_node = FeatureExtractionNode()
|
|
train_node = TrainModelNode()
|
|
evaluate_node = EvaluateModelNode()
|
|
feature_node >> train_node >> evaluate_node
|
|
model_flow = ModelFlow(start=feature_node)
|
|
data_prep_node = DataPrepBatchNode()
|
|
validate_node = ValidateDataNode()
|
|
data_prep_node >> validate_node >> model_flow
|
|
data_science_flow = DataScienceFlow(start=data_prep_node)
|
|
data_science_flow.run({})
|
|
```
|
|
|
|
The output would be: `Call stack: ['EvaluateModelNode', 'ModelFlow', 'DataScienceFlow']` |