debug empty shared memory

This commit is contained in:
zachary62 2024-12-25 21:54:34 +00:00
parent 83dbc13054
commit c4c78b1939
2 changed files with 151 additions and 106 deletions

View File

@ -1,5 +1,6 @@
import asyncio
import warnings
class BaseNode:
"""
A base node that provides:
@ -62,10 +63,19 @@ class BaseNode:
"""
return _ConditionalTransition(self, condition)
def __sub__(self, condition):
"""
For chaining with - operator, e.g. node - "some_condition" >> next_node
"""
if isinstance(condition, str):
return _ConditionalTransition(self, condition)
raise TypeError("Condition must be a string")
class _ConditionalTransition:
"""
Helper for Node > 'condition' >> AnotherNode style
(and also Node - 'condition' >> AnotherNode now).
"""
def __init__(self, source_node, condition):
self.source_node = source_node
@ -74,7 +84,6 @@ class _ConditionalTransition:
def __rshift__(self, target_node):
return self.source_node.add_successor(target_node, self.condition)
# robust running process
class Node(BaseNode):
def __init__(self, max_retries=1):
super().__init__()
@ -82,7 +91,6 @@ class Node(BaseNode):
def process_after_fail(self, shared_storage, data, exc):
raise exc
# return "fail"
def _process(self, shared_storage, data):
for attempt in range(self.max_retries):
@ -91,28 +99,16 @@ class Node(BaseNode):
except Exception as e:
if attempt == self.max_retries - 1:
return self.process_after_fail(shared_storage, data, e)
class Flow(BaseNode):
def __init__(self, start_node=None):
self.start_node = start_node
def _process(self, shared_storage, _):
current_node = self.start_node
while current_node:
condition = current_node.run(shared_storage)
current_node = current_node.successors.get(condition, None)
def postprocess(self, shared_storage, prep_result, proc_result):
return None
class AsyncNode(Node):
"""
A Node whose postprocess step is async.
You can also override process() to be async if needed.
"""
def postprocess(self, shared_storage, prep_result, proc_result):
# Not used in async workflow; define postprocess_async() instead.
raise NotImplementedError("AsyncNode requires postprocess_async, and should be run in an AsyncFlow")
async def postprocess_async(self, shared_storage, prep_result, proc_result):
"""
Async version of postprocess. By default, returns "default".
@ -122,106 +118,155 @@ class AsyncNode(Node):
return "default"
async def run_async(self, shared_storage=None):
"""
Async version of run.
If your process method is also async, you'll need to adapt accordingly.
"""
# We can keep preprocess synchronous or make it async as well,
# depending on your usage. Here it's left as sync for simplicity.
prep = self.preprocess(shared_storage)
# process can remain sync if you prefer, or you can define an async process.
proc = self._process(shared_storage, prep)
# postprocess is async
return await self.postprocess_async(shared_storage, prep, proc)
class AsyncFlow(Flow):
class BaseFlow(BaseNode):
"""
A Flow that can handle a mixture of sync and async nodes.
If the node is an AsyncNode, calls `run_async`.
Otherwise, calls `run`.
Abstract base flow that provides the main logic of:
- Starting from self.start_node
- Looping until no more successors
Subclasses must define how they *call* each node (sync or async).
"""
async def _process(self, shared_storage, _):
current_node = self.start_node
while current_node:
if hasattr(current_node, "run_async") and callable(current_node.run_async):
# If it's an async node, await its run_async
condition = await current_node.run_async(shared_storage)
else:
# Otherwise, assume it's a sync node
condition = current_node.run(shared_storage)
current_node = current_node.successors.get(condition, None)
async def run_async(self, shared_storage=None):
"""
Kicks off the async flow. Similar to Flow.run,
but uses our async _process method.
"""
prep = self.preprocess(shared_storage)
# Note: flows typically don't need a meaningful process step
# because the "process" is the iteration through the nodes.
await self._process(shared_storage, prep)
return self.postprocess(shared_storage, prep, None)
class BatchNode(BaseNode):
def __init__(self, max_retries=5, delay_s=0.1):
super().__init__()
self.max_retries = max_retries
self.delay_s = delay_s
def preprocess(self, shared_storage):
return []
def process_one(self, shared_storage, item):
return None
def process_one_after_fail(self, shared_storage, item, exc):
print(f"[FAIL_ITEM] item={item}, error={exc}")
# By default, just return a "fail" marker. Could be anything you want.
return "fail"
async def _process_one(self, shared_storage, item):
for attempt in range(self.max_retries):
try:
return await self.process_one(shared_storage, item)
except Exception as e:
if attempt == self.max_retries - 1:
# If out of retries, let a subclass handle what to do next
return await self.process_one_after_fail(shared_storage, item, e)
await asyncio.sleep(self.delay_s)
async def _process(self, shared_storage, items):
results = []
for item in items:
r = await self._process_one(shared_storage, item)
results.append(r)
return results
class BatchFlow(BaseNode):
def __init__(self, start_node=None):
super().__init__()
self.start_node = start_node
def get_next_node(self, current_node, condition):
next_node = current_node.successors.get(condition, None)
if next_node is None and current_node.successors:
warnings.warn(f"Flow will end. Condition '{condition}' not found among possible conditions: {list(current_node.successors.keys())}")
return next_node
def run(self, shared_storage=None):
"""
By default, do nothing (or raise).
Subclasses (Flow, AsyncFlow) will implement.
"""
raise NotImplementedError("BaseFlow.run must be implemented by subclasses")
async def run_async(self, shared_storage=None):
"""
By default, do nothing (or raise).
Subclasses (Flow, AsyncFlow) will implement.
"""
raise NotImplementedError("BaseFlow.run_async must be implemented by subclasses")
class Flow(BaseFlow):
"""
Synchronous flow: each node is called with .run(shared_storage).
"""
def _process_flow(self, shared_storage):
current_node = self.start_node
while current_node:
# Pass down the Flow's parameters to the current node
current_node.set_parameters(self.parameters)
# Synchronous run
condition = current_node.run(shared_storage)
# Decide next node
current_node = self.get_next_node(current_node, condition)
def run(self, shared_storage=None):
prep_result = self.preprocess(shared_storage)
self._process_flow(shared_storage)
return self.postprocess(shared_storage, prep_result, None)
class AsyncFlow(BaseFlow):
"""
Asynchronous flow: if a node has .run_async, we await it.
Otherwise, we fallback to .run.
"""
async def _process_flow_async(self, shared_storage):
current_node = self.start_node
while current_node:
current_node.set_parameters(self.parameters)
# If node is async-capable, call run_async; otherwise run sync
if hasattr(current_node, "run_async") and callable(current_node.run_async):
condition = await current_node.run_async(shared_storage)
else:
condition = current_node.run(shared_storage)
current_node = self.get_next_node(current_node, condition)
async def run_async(self, shared_storage=None):
prep_result = self.preprocess(shared_storage)
await self._process_flow_async(shared_storage)
return self.postprocess(shared_storage, prep_result, None)
def run(self, shared_storage=None):
return asyncio.run(self.run_async(shared_storage))
class BaseBatchFlow(BaseFlow):
"""
Abstract base for a flow that runs multiple times (a batch),
once for each set of parameters or items from preprocess().
"""
def preprocess(self, shared_storage):
"""
By default, returns an iterable of parameter-dicts or items
for the flow to process in a batch.
"""
return []
async def _process_one(self, shared_storage, param_dict):
node_parameters = self.parameters.copy()
node_parameters.update(param_dict)
def post_batch_run(self, all_results):
"""
Hook for after the entire batch is done, to combine results, etc.
"""
return all_results
if self.start_node:
current_node = self.start_node
while current_node:
# set the combined parameters
current_node.set_parameters(node_parameters)
current_node = await current_node._run_one(shared_storage or {})
class BatchFlow(BaseBatchFlow, Flow):
"""
Synchronous batch flow: calls the flow repeatedly
for each set of parameters/items in preprocess().
"""
def run(self, shared_storage=None):
prep_result = self.preprocess(shared_storage)
all_results = []
async def _process(self, shared_storage, items):
results = []
for param_dict in items:
await self._process_one(shared_storage, param_dict)
results.append(f"Ran sub-flow for param_dict={param_dict}")
return results
# For each set of parameters (or items) we got from preprocess
for param_dict in prep_result:
# Merge param_dict into the Flow's parameters
original_params = self.parameters.copy()
self.parameters.update(param_dict)
# Run from the start node to end
self._process_flow(shared_storage)
# Optionally collect results from shared_storage or a custom method
all_results.append(f"Finished run with parameters: {param_dict}")
# Reset the parameters if needed
self.parameters = original_params
# Postprocess the entire batch
result = self.post_batch_run(all_results)
return self.postprocess(shared_storage, prep_result, result)
class BatchAsyncFlow(BaseBatchFlow, AsyncFlow):
"""
Asynchronous batch flow: calls the flow repeatedly in an async manner
for each set of parameters/items in preprocess().
"""
async def run_async(self, shared_storage=None):
prep_result = self.preprocess(shared_storage)
all_results = []
for param_dict in prep_result:
original_params = self.parameters.copy()
self.parameters.update(param_dict)
await self._process_flow_async(shared_storage)
all_results.append(f"Finished async run with parameters: {param_dict}")
# Reset back to original parameters if needed
self.parameters = original_params
# Combine or process results at the end
result = self.post_batch_run(all_results)
return self.postprocess(shared_storage, prep_result, result)