272 lines
9.3 KiB
Python
272 lines
9.3 KiB
Python
import asyncio
|
|
import warnings
|
|
|
|
class BaseNode:
|
|
"""
|
|
A base node that provides:
|
|
- preprocess()
|
|
- process()
|
|
- postprocess()
|
|
- run() -- just runs itself (no chaining)
|
|
"""
|
|
def __init__(self):
|
|
self.parameters = {}
|
|
self.successors = {}
|
|
|
|
def set_parameters(self, params):
|
|
self.parameters.update(params)
|
|
|
|
def add_successor(self, node, condition="default"):
|
|
if condition in self.successors:
|
|
print(f"Warning: overwriting existing successor for condition '{condition}'")
|
|
self.successors[condition] = node
|
|
return node
|
|
|
|
def preprocess(self, shared_storage):
|
|
return None
|
|
|
|
def process(self, shared_storage, prep_result):
|
|
return None
|
|
|
|
def _process(self, shared_storage, prep_result):
|
|
# Could have retry logic or other wrap logic
|
|
return self.process(shared_storage, prep_result)
|
|
|
|
def postprocess(self, shared_storage, prep_result, proc_result):
|
|
return "default"
|
|
|
|
def run(self, shared_storage=None):
|
|
prep = self.preprocess(shared_storage)
|
|
proc = self._process(shared_storage, prep)
|
|
return self.postprocess(shared_storage, prep, proc)
|
|
|
|
def __rshift__(self, other):
|
|
"""
|
|
For chaining with >> operator, e.g. node1 >> node2
|
|
"""
|
|
return self.add_successor(other)
|
|
|
|
def __gt__(self, other):
|
|
"""
|
|
For chaining with > operator, e.g. node1 > "some_condition"
|
|
then >> node2
|
|
"""
|
|
if isinstance(other, str):
|
|
return _ConditionalTransition(self, other)
|
|
elif isinstance(other, BaseNode):
|
|
return self.add_successor(other)
|
|
raise TypeError("Unsupported operand type")
|
|
|
|
def __call__(self, condition):
|
|
"""
|
|
For node("condition") >> next_node syntax
|
|
"""
|
|
return _ConditionalTransition(self, condition)
|
|
|
|
def __sub__(self, condition):
|
|
"""
|
|
For chaining with - operator, e.g. node - "some_condition" >> next_node
|
|
"""
|
|
if isinstance(condition, str):
|
|
return _ConditionalTransition(self, condition)
|
|
raise TypeError("Condition must be a string")
|
|
|
|
|
|
class _ConditionalTransition:
|
|
"""
|
|
Helper for Node > 'condition' >> AnotherNode style
|
|
(and also Node - 'condition' >> AnotherNode now).
|
|
"""
|
|
def __init__(self, source_node, condition):
|
|
self.source_node = source_node
|
|
self.condition = condition
|
|
|
|
def __rshift__(self, target_node):
|
|
return self.source_node.add_successor(target_node, self.condition)
|
|
|
|
class Node(BaseNode):
|
|
def __init__(self, max_retries=1):
|
|
super().__init__()
|
|
self.max_retries = max_retries
|
|
|
|
def process_after_fail(self, shared_storage, data, exc):
|
|
raise exc
|
|
|
|
def _process(self, shared_storage, data):
|
|
for attempt in range(self.max_retries):
|
|
try:
|
|
return super()._process(shared_storage, data)
|
|
except Exception as e:
|
|
if attempt == self.max_retries - 1:
|
|
return self.process_after_fail(shared_storage, data, e)
|
|
|
|
class AsyncNode(Node):
|
|
"""
|
|
A Node whose postprocess step is async.
|
|
You can also override process() to be async if needed.
|
|
"""
|
|
def postprocess(self, shared_storage, prep_result, proc_result):
|
|
# Not used in async workflow; define postprocess_async() instead.
|
|
raise NotImplementedError("AsyncNode requires postprocess_async, and should be run in an AsyncFlow")
|
|
|
|
async def postprocess_async(self, shared_storage, prep_result, proc_result):
|
|
"""
|
|
Async version of postprocess. By default, returns "default".
|
|
Override as needed.
|
|
"""
|
|
await asyncio.sleep(0) # trivial async pause (no-op)
|
|
return "default"
|
|
|
|
async def run_async(self, shared_storage=None):
|
|
prep = self.preprocess(shared_storage)
|
|
proc = self._process(shared_storage, prep)
|
|
return await self.postprocess_async(shared_storage, prep, proc)
|
|
|
|
|
|
class BaseFlow(BaseNode):
|
|
"""
|
|
Abstract base flow that provides the main logic of:
|
|
- Starting from self.start_node
|
|
- Looping until no more successors
|
|
Subclasses must define how they *call* each node (sync or async).
|
|
"""
|
|
def __init__(self, start_node=None):
|
|
super().__init__()
|
|
self.start_node = start_node
|
|
|
|
def get_next_node(self, current_node, condition):
|
|
next_node = current_node.successors.get(condition, None)
|
|
|
|
if next_node is None and current_node.successors:
|
|
warnings.warn(f"Flow will end. Condition '{condition}' not found among possible conditions: {list(current_node.successors.keys())}")
|
|
|
|
return next_node
|
|
|
|
def run(self, shared_storage=None):
|
|
"""
|
|
By default, do nothing (or raise).
|
|
Subclasses (Flow, AsyncFlow) will implement.
|
|
"""
|
|
raise NotImplementedError("BaseFlow.run must be implemented by subclasses")
|
|
|
|
async def run_async(self, shared_storage=None):
|
|
"""
|
|
By default, do nothing (or raise).
|
|
Subclasses (Flow, AsyncFlow) will implement.
|
|
"""
|
|
raise NotImplementedError("BaseFlow.run_async must be implemented by subclasses")
|
|
|
|
class Flow(BaseFlow):
|
|
"""
|
|
Synchronous flow: each node is called with .run(shared_storage).
|
|
"""
|
|
def _process_flow(self, shared_storage):
|
|
current_node = self.start_node
|
|
while current_node:
|
|
# Pass down the Flow's parameters to the current node
|
|
current_node.set_parameters(self.parameters)
|
|
# Synchronous run
|
|
condition = current_node.run(shared_storage)
|
|
# Decide next node
|
|
current_node = self.get_next_node(current_node, condition)
|
|
|
|
def run(self, shared_storage=None):
|
|
prep_result = self.preprocess(shared_storage)
|
|
self._process_flow(shared_storage)
|
|
return self.postprocess(shared_storage, prep_result, None)
|
|
|
|
class AsyncFlow(BaseFlow):
|
|
"""
|
|
Asynchronous flow: if a node has .run_async, we await it.
|
|
Otherwise, we fallback to .run.
|
|
"""
|
|
async def _process_flow_async(self, shared_storage):
|
|
current_node = self.start_node
|
|
while current_node:
|
|
current_node.set_parameters(self.parameters)
|
|
|
|
# If node is async-capable, call run_async; otherwise run sync
|
|
if hasattr(current_node, "run_async") and callable(current_node.run_async):
|
|
condition = await current_node.run_async(shared_storage)
|
|
else:
|
|
condition = current_node.run(shared_storage)
|
|
|
|
current_node = self.get_next_node(current_node, condition)
|
|
|
|
async def run_async(self, shared_storage=None):
|
|
prep_result = self.preprocess(shared_storage)
|
|
await self._process_flow_async(shared_storage)
|
|
return self.postprocess(shared_storage, prep_result, None)
|
|
|
|
def run(self, shared_storage=None):
|
|
return asyncio.run(self.run_async(shared_storage))
|
|
|
|
class BaseBatchFlow(BaseFlow):
|
|
"""
|
|
Abstract base for a flow that runs multiple times (a batch),
|
|
once for each set of parameters or items from preprocess().
|
|
"""
|
|
def preprocess(self, shared_storage):
|
|
"""
|
|
By default, returns an iterable of parameter-dicts or items
|
|
for the flow to process in a batch.
|
|
"""
|
|
return []
|
|
|
|
def post_batch_run(self, all_results):
|
|
"""
|
|
Hook for after the entire batch is done, to combine results, etc.
|
|
"""
|
|
return all_results
|
|
|
|
class BatchFlow(BaseBatchFlow, Flow):
|
|
"""
|
|
Synchronous batch flow: calls the flow repeatedly
|
|
for each set of parameters/items in preprocess().
|
|
"""
|
|
def run(self, shared_storage=None):
|
|
prep_result = self.preprocess(shared_storage)
|
|
all_results = []
|
|
|
|
# For each set of parameters (or items) we got from preprocess
|
|
for param_dict in prep_result:
|
|
# Merge param_dict into the Flow's parameters
|
|
original_params = self.parameters.copy()
|
|
self.parameters.update(param_dict)
|
|
|
|
# Run from the start node to end
|
|
self._process_flow(shared_storage)
|
|
|
|
# Optionally collect results from shared_storage or a custom method
|
|
all_results.append(f"Finished run with parameters: {param_dict}")
|
|
|
|
# Reset the parameters if needed
|
|
self.parameters = original_params
|
|
|
|
# Postprocess the entire batch
|
|
result = self.post_batch_run(all_results)
|
|
return self.postprocess(shared_storage, prep_result, result)
|
|
|
|
class BatchAsyncFlow(BaseBatchFlow, AsyncFlow):
|
|
"""
|
|
Asynchronous batch flow: calls the flow repeatedly in an async manner
|
|
for each set of parameters/items in preprocess().
|
|
"""
|
|
async def run_async(self, shared_storage=None):
|
|
prep_result = self.preprocess(shared_storage)
|
|
all_results = []
|
|
|
|
for param_dict in prep_result:
|
|
original_params = self.parameters.copy()
|
|
self.parameters.update(param_dict)
|
|
|
|
await self._process_flow_async(shared_storage)
|
|
|
|
all_results.append(f"Finished async run with parameters: {param_dict}")
|
|
|
|
# Reset back to original parameters if needed
|
|
self.parameters = original_params
|
|
|
|
# Combine or process results at the end
|
|
result = self.post_batch_run(all_results)
|
|
return self.postprocess(shared_storage, prep_result, result) |