184 lines
7.4 KiB
Python
184 lines
7.4 KiB
Python
import asyncio
|
|
import warnings
|
|
|
|
class BaseNode:
|
|
# preprocess(): this is for compute intensive preparation tasks, before the LLM call
|
|
# process(): this is for the LLM call, and should be idempotent for retries
|
|
# postprocess(): this is to summarize the result and retrun the condition for the successor node
|
|
def __init__(self):
|
|
self.params, self.successors = {}, {}
|
|
|
|
def set_params(self, params): # make sure params is immutable
|
|
self.params = params # must be immutable during pre/post/process
|
|
|
|
def add_successor(self, node, condition="default"):
|
|
if condition in self.successors:
|
|
warnings.warn(f"Overwriting existing successor for condition '{condition}'")
|
|
self.successors[condition] = node # maps condition -> successor node
|
|
return node
|
|
|
|
def preprocess(self, shared_storage):
|
|
return None # will be passed to process() and postprocess()
|
|
|
|
def process(self, shared_storage, prep_result):
|
|
return None # will be passed to postprocess()
|
|
|
|
def _process(self, shared_storage, prep_result):
|
|
# Could have retry logic or other wrap logic
|
|
return self.process(shared_storage, prep_result)
|
|
|
|
def postprocess(self, shared_storage, prep_result, proc_result):
|
|
return "default" # condition for next node
|
|
|
|
def _run(self, shared_storage):
|
|
prep_result = self.preprocess(shared_storage)
|
|
proc_result = self._process(shared_storage, prep_result)
|
|
return self.postprocess(shared_storage, prep_result, proc_result)
|
|
|
|
def run(self, shared_storage):
|
|
if self.successors:
|
|
warnings.warn("This node has successor nodes. To run its successors, wrap this node in a parent Flow and use that Flow.run() instead.")
|
|
return self._run(shared_storage)
|
|
|
|
def __rshift__(self, other):
|
|
# chaining: node1 >> node2
|
|
return self.add_successor(other)
|
|
|
|
def __sub__(self, condition):
|
|
# condition-based chaining: node - "some_condition" >> next_node
|
|
if isinstance(condition, str):
|
|
return _ConditionalTransition(self, condition)
|
|
raise TypeError("Condition must be a string")
|
|
|
|
class _ConditionalTransition:
|
|
def __init__(self, source_node, condition):
|
|
self.source_node = source_node
|
|
self.condition = condition
|
|
|
|
def __rshift__(self, target_node):
|
|
return self.source_node.add_successor(target_node, self.condition)
|
|
|
|
class Node(BaseNode):
|
|
def __init__(self, max_retries=1):
|
|
super().__init__()
|
|
self.max_retries = max_retries
|
|
|
|
def process_after_fail(self, shared_storage, data, exc):
|
|
raise exc
|
|
|
|
def _process(self, shared_storage, data):
|
|
for attempt in range(self.max_retries):
|
|
try:
|
|
return super()._process(shared_storage, data)
|
|
except Exception as e:
|
|
if attempt == self.max_retries - 1:
|
|
return self.process_after_fail(shared_storage, data, e)
|
|
|
|
class BatchNode(Node):
|
|
def preprocess(self, shared_storage):
|
|
# return an iterable of items, one for each run
|
|
return []
|
|
|
|
def process(self, shared_storage, item): # process() is called for each item
|
|
return None
|
|
|
|
def _process(self, shared_storage, items):
|
|
results = []
|
|
for item in items:
|
|
# Here, 'item' is passed in place of 'prep_result' from the BaseNode's perspective.
|
|
r = super()._process(shared_storage, item)
|
|
results.append(r)
|
|
return results
|
|
|
|
class AsyncNode(Node):
|
|
def postprocess(self, shared_storage, prep_result, proc_result):
|
|
raise NotImplementedError("AsyncNode requires postprocess_async, and should be run in an AsyncFlow")
|
|
|
|
async def postprocess_async(self, shared_storage, prep_result, proc_result):
|
|
await asyncio.sleep(0) # trivial async pause (no-op)
|
|
return "default"
|
|
|
|
async def run_async(self, shared_storage):
|
|
if self.successors:
|
|
warnings.warn("This node has successor nodes. To run its successors, wrap this node in a parent AsyncFlow and use that AsyncFlow.run_async() instead.")
|
|
return await self._run_async(shared_storage)
|
|
|
|
async def _run_async(self, shared_storage):
|
|
prep_result = self.preprocess(shared_storage)
|
|
proc_result = self._process(shared_storage, prep_result)
|
|
return await self.postprocess_async(shared_storage, prep_result, proc_result)
|
|
|
|
def _run(self, shared_storage):
|
|
raise RuntimeError("AsyncNode requires asynchronous execution. Use 'await node.run_async()' if inside an async function, or 'asyncio.run(node.run_async())' if in synchronous code.")
|
|
|
|
class BaseFlow(BaseNode):
|
|
def __init__(self, start_node):
|
|
super().__init__()
|
|
self.start_node = start_node
|
|
|
|
def get_next_node(self, current_node, condition):
|
|
next_node = current_node.successors.get(condition, None)
|
|
|
|
if next_node is None and current_node.successors:
|
|
warnings.warn(f"Flow will end. Condition '{condition}' not found among possible conditions: {list(current_node.successors.keys())}")
|
|
|
|
return next_node
|
|
|
|
class Flow(BaseFlow):
|
|
def _process(self, shared_storage, params=None):
|
|
current_node = self.start_node
|
|
params = params if params is not None else self.params.copy()
|
|
|
|
while current_node:
|
|
current_node.set_params(params)
|
|
condition = current_node._run(shared_storage)
|
|
current_node = self.get_next_node(current_node, condition)
|
|
|
|
def process(self, shared_storage, prep_result):
|
|
raise NotImplementedError("Flow should not process directly")
|
|
|
|
class AsyncFlow(BaseFlow, AsyncNode):
|
|
async def _process_async(self, shared_storage, params=None):
|
|
current_node = self.start_node
|
|
params = params if params is not None else self.params.copy()
|
|
|
|
while current_node:
|
|
current_node.set_params(params)
|
|
|
|
if hasattr(current_node, "run_async") and callable(current_node.run_async):
|
|
condition = await current_node._run_async(shared_storage)
|
|
else:
|
|
condition = current_node._run(shared_storage)
|
|
|
|
current_node = self.get_next_node(current_node, condition)
|
|
|
|
async def _run_async(self, shared_storage):
|
|
prep_result = self.preprocess(shared_storage)
|
|
await self._process_async(shared_storage)
|
|
return await self.postprocess_async(shared_storage, prep_result, None)
|
|
|
|
class BaseBatchFlow(BaseFlow):
|
|
def preprocess(self, shared_storage):
|
|
return [] # return an iterable of parameter dictionaries
|
|
|
|
class BatchFlow(BaseBatchFlow, Flow):
|
|
def _run(self, shared_storage):
|
|
prep_result = self.preprocess(shared_storage)
|
|
|
|
for param_dict in prep_result:
|
|
merged_params = self.params.copy()
|
|
merged_params.update(param_dict)
|
|
self._process(shared_storage, params=merged_params)
|
|
|
|
return self.postprocess(shared_storage, prep_result, None)
|
|
|
|
class BatchAsyncFlow(BaseBatchFlow, AsyncFlow):
|
|
async def _run_async(self, shared_storage):
|
|
prep_result = self.preprocess(shared_storage)
|
|
|
|
for param_dict in prep_result:
|
|
merged_params = self.params.copy()
|
|
merged_params.update(param_dict)
|
|
await self._process_async(shared_storage, params=merged_params)
|
|
|
|
return await self.postprocess_async(shared_storage, prep_result, None) |