--- layout: default title: "Agent" parent: "Design" nav_order: 6 --- # Agent Agent is a powerful design pattern, where node can take dynamic actions based on the context it receives. To express an agent, create a Node (the agent) with [branching](./flow.md) to other nodes (Actions). > The core of build **performant** and **reliable** agents boils down to: > > 1. **Context Management:** Provide *clear, relevant context* so agents can understand the problem.E.g., Rather than dumping an entire chat history or entire files, use a [Workflow](./decomp.md) that filters out and includes only the most relevant information. > > 2. **Action Space:** Define *a well-structured, unambiguous, and easy-to-use* set of actions. For instance, avoid creating overlapping actions like `read_databases` and `read_csvs`. Instead, unify data sources (e.g., move CSVs into a database) and design a single action. The action can be parameterized (e.g., string for search) or programmable (e.g., SQL queries). {: .best-practice } ### Example: Search Agent This agent: 1. Decides whether to search or answer 2. If searches, loops back to decide if more search needed 3. Answers when enough context gathered ```python class DecideAction(Node): def prep(self, shared): context = shared.get("context", "No previous search") query = shared["query"] return query, context def exec(self, inputs): query, context = inputs prompt = f""" Given input: {query} Previous search results: {context} Should I: 1) Search web for more info 2) Answer with current knowledge Output in yaml: ```yaml action: search/answer reason: why this action search_term: search phrase if action is search ```""" resp = call_llm(prompt) yaml_str = resp.split("```yaml")[1].split("```")[0].strip() result = yaml.safe_load(yaml_str) assert isinstance(result, dict) assert "action" in result assert "reason" in result assert result["action"] in ["search", "answer"] if result["action"] == "search": assert "search_term" in result return result def post(self, shared, prep_res, exec_res): if exec_res["action"] == "search": shared["search_term"] = exec_res["search_term"] return exec_res["action"] class SearchWeb(Node): def prep(self, shared): return shared["search_term"] def exec(self, search_term): return search_web(search_term) def post(self, shared, prep_res, exec_res): prev_searches = shared.get("context", []) shared["context"] = prev_searches + [ {"term": shared["search_term"], "result": exec_res} ] return "decide" class DirectAnswer(Node): def prep(self, shared): return shared["query"], shared.get("context", "") def exec(self, inputs): query, context = inputs return call_llm(f"Context: {context}\nAnswer: {query}") def post(self, shared, prep_res, exec_res): print(f"Answer: {exec_res}") shared["answer"] = exec_res # Connect nodes decide = DecideAction() search = SearchWeb() answer = DirectAnswer() decide - "search" >> search decide - "answer" >> answer search - "decide" >> decide # Loop back flow = Flow(start=decide) flow.run({"query": "Who won the Nobel Prize in Physics 2024?"}) ```