================================================
File: docs/guide.md
================================================
---
layout: default
title: "Agentic Coding"
---
# Agentic Coding: Humans Design, Agents code!
> If you are an AI agents involved in building LLM Systems, read this guide **VERY, VERY** carefully! This is the most important chapter in the entire document. Throughout development, you should always (1) start with a small and simple solution, (2) design at a high level (`docs/design.md`) before implementation, and (3) frequently ask humans for feedback and clarification.
{: .warning }
## Agentic Coding Steps
Agentic Coding should be a collaboration between Human System Design and Agent Implementation:
| Steps | Human | AI | Comment |
|:-----------------------|:----------:|:---------:|:------------------------------------------------------------------------|
| 1. Requirements | ★★★ High | ★☆☆ Low | Humans understand the requirements and context. |
| 2. Flow | ★★☆ Medium | ★★☆ Medium | Humans specify the high-level design, and the AI fills in the details. |
| 3. Utilities | ★★☆ Medium | ★★☆ Medium | Humans provide available external APIs and integrations, and the AI helps with implementation. |
| 4. Node | ★☆☆ Low | ★★★ High | The AI helps design the node types and data handling based on the flow. |
| 5. Implementation | ★☆☆ Low | ★★★ High | The AI implements the flow based on the design. |
| 6. Optimization | ★★☆ Medium | ★★☆ Medium | Humans evaluate the results, and the AI helps optimize. |
| 7. Reliability | ★☆☆ Low | ★★★ High | The AI writes test cases and addresses corner cases. |
1. **Requirements**: Clarify the requirements for your project, and evaluate whether an AI system is a good fit. AI systems are:
- suitable for routine tasks that require common sense (e.g., filling out forms, replying to emails).
- suitable for creative tasks where all inputs are provided (e.g., building slides, writing SQL).
- **NOT** suitable for tasks that are highly ambiguous and require complex info (e.g., building a startup).
- > **If Humans can’t specify it, AI Agents can’t automate it!** Before building an LLM system, thoroughly understand the problem by manually solving example inputs to develop intuition.
{: .best-practice }
2. **Flow Design**: Outline at a high level, describe how your AI system orchestrates nodes.
- Identify applicable design patterns (e.g., [Map Reduce](./design_pattern/mapreduce.md), [Agent](./design_pattern/agent.md), [RAG](./design_pattern/rag.md)).
- Outline the flow and draw it in a mermaid diagram. For example:
```mermaid
flowchart LR
firstNode[First Node] --> secondNode[Second Node]
secondNode --> thirdNode[Third Node]
```
3. **Utilities**: Based on the Flow Design, identify and implement necessary utility functions.
- Think of your AI system as the brain. It needs a body—these *external utility functions*—to interact with the real world:

- Reading inputs (e.g., retrieving Slack messages, reading emails)
- Writing outputs (e.g., generating reports, sending emails)
- Using external tools (e.g., calling LLMs, searching the web)
- **NOTE**: *LLM-based tasks* (e.g., summarizing text, analyzing sentiment) are **NOT** utility functions; rather, they are *core functions* internal in the AI system.
- For each utility function, implement it and write a simple test.
- Document their input/output, as well as why they are necessary. For example:
- *Name*: Embedding (`utils/get_embedding.py`)
- *Input*: `str`
- *Output*: a vector of 3072 floats
- *Necessity:* Used by the second node to embed text
- > **Sometimes, design Utilies before Flow:** For example, for an LLM project to automate a legacy system, the bottleneck will likely be the available interface to that system. Start by designing the hardest utilities for interfacing, and then build the flow around them.
{: .best-practice }
4. **Node Design**: Plan how each node will read and write data, and use utility functions.
- Start with the shared data design
- For simple systems, use an in-memory dictionary.
- For more complex systems or when persistence is required, use a database.
- **Don't Repeat Yourself"**: Use in-memory references or foreign keys.
- For each node, describe its type, how it reads and writes data, and which utility function it uses. Keep it specific but high-level without codes. For example:
- `type`: Regular (or Batch, or Async)
- `prep`: Read "text" from the shared store
- `exec`: Call the embedding utility function
- `post`: Write "embedding" to the shared store
5. **Implementation**: Implement the initial nodes and flows based on the design.
- 🎉 If you’ve reached this step, humans have finished the design. Now *Agentic Coding* begins!
- **“Keep it simple, stupid!”** Avoid complex features and full-scale type checking.
- **FAIL FAST**! Avoid `try` logic so you can quickly identify any weak points in the system.
- Add logging throughout the code to facilitate debugging.
7. **Optimization**:
- **Use Intuition**: For a quick initial evaluation, human intuition is often a good start.
- **Redesign Flow (Back to Step 3)**: Consider breaking down tasks further, introducing agentic decisions, or better managing input contexts.
- If your flow design is already solid, move on to micro-optimizations:
- **Prompt Engineering**: Use clear, specific instructions with examples to reduce ambiguity.
- **In-Context Learning**: Provide robust examples for tasks that are difficult to specify with instructions alone.
- > **You’ll likely iterate a lot!** Expect to repeat Steps 3–6 hundreds of times.
>
> 
{: .best-practice }
8. **Reliability**
- **Node Retries**: Add checks in the node `exec` to ensure outputs meet requirements, and consider increasing `max_retries` and `wait` times.
- **Logging and Visualization**: Maintain logs of all attempts and visualize node results for easier debugging.
- **Self-Evaluation**: Add a separate node (powered by an LLM) to review outputs when results are uncertain.
## Example LLM Project File Structure
```
my_project/
├── main.py
├── flow.py
├── utils/
│ ├── __init__.py
│ ├── call_llm.py
│ └── search_web.py
├── requirements.txt
└── docs/
└── design.md
```
- **`docs/design.md`**: Contains project documentation for each step above. This should be high-level and no-code.
- **`utils/`**: Contains all utility functions.
- It’s recommended to dedicate one Python file to each API call, for example `call_llm.py` or `search_web.py`.
- Each file should also include a `main()` function to try that API call
- **`flow.py`**: Implements the system's flow, starting with node definitions followed by the overall structure.
- **`main.py`**: Serves as the project’s entry point.
================================================
File: docs/index.md
================================================
---
layout: default
title: "Home"
nav_order: 1
---
# Pocket Flow
A [100-line](https://github.com/the-pocket/PocketFlow/blob/main/pocketflow/__init__.py) minimalist LLM framework for *Agents, Task Decomposition, RAG, etc*.
- **Lightweight**: Just the core graph abstraction in 100 lines. ZERO dependencies, and vendor lock-in.
- **Expressive**: Everything you love from larger frameworks—([Multi-](./design_pattern/multi_agent.html))[Agents](./design_pattern/agent.html), [Workflow](./design_pattern/workflow.html), [RAG](./design_pattern/rag.html), and more.
- **Agentic-Coding**: Intuitive enough for AI agents to help humans build complex LLM applications.
## Core Abstraction
We model the LLM workflow as a **Graph + Shared Store**:
- [Node](./core_abstraction/node.md) handles simple (LLM) tasks.
- [Flow](./core_abstraction/flow.md) connects nodes through **Actions** (labeled edges).
- [Shared Store](./core_abstraction/communication.md) enables communication between nodes within flows.
- [Batch](./core_abstraction/batch.md) nodes/flows allow for data-intensive tasks.
- [Async](./core_abstraction/async.md) nodes/flows allow waiting for asynchronous tasks.
- [(Advanced) Parallel](./core_abstraction/parallel.md) nodes/flows handle I/O-bound tasks.
## Design Pattern
From there, it’s easy to implement popular design patterns:
- [Agent](./design_pattern/agent.md) autonomously makes decisions.
- [Workflow](./design_pattern/workflow.md) chains multiple tasks into pipelines.
- [RAG](./design_pattern/rag.md) integrates data retrieval with generation.
- [Map Reduce](./design_pattern/mapreduce.md) splits data tasks into Map and Reduce steps.
- [Structured Output](./design_pattern/structure.md) formats outputs consistently.
- [(Advanced) Multi-Agents](./design_pattern/multi_agent.md) coordinate multiple agents.
## Utility Function
We **do not** provide built-in utilities. Instead, we offer *examples*—please *implement your own*:
- [LLM Wrapper](./utility_function/llm.md)
- [Viz and Debug](./utility_function/viz.md)
- [Web Search](./utility_function/websearch.md)
- [Chunking](./utility_function/chunking.md)
- [Embedding](./utility_function/embedding.md)
- [Vector Databases](./utility_function/vector.md)
- [Text-to-Speech](./utility_function/text_to_speech.md)
**Why not built-in?**: I believe it's a *bad practice* for vendor-specific APIs in a general framework:
- *API Volatility*: Frequent changes lead to heavy maintenance for hardcoded APIs.
- *Flexibility*: You may want to switch vendors, use fine-tuned models, or run them locally.
- *Optimizations*: Prompt caching, batching, and streaming are easier without vendor lock-in.
## Ready to build your Apps?
Check out [Agentic Coding Guidance](./guide.md), the fastest way to develop LLM projects with Pocket Flow!
================================================
File: docs/core_abstraction/async.md
================================================
---
layout: default
title: "(Advanced) Async"
parent: "Core Abstraction"
nav_order: 5
---
# (Advanced) Async
**Async** Nodes implement `prep_async()`, `exec_async()`, `exec_fallback_async()`, and/or `post_async()`. This is useful for:
1. **prep_async()**: For *fetching/reading data (files, APIs, DB)* in an I/O-friendly way.
2. **exec_async()**: Typically used for async LLM calls.
3. **post_async()**: For *awaiting user feedback*, *coordinating across multi-agents* or any additional async steps after `exec_async()`.
**Note**: `AsyncNode` must be wrapped in `AsyncFlow`. `AsyncFlow` can also include regular (sync) nodes.
### Example
```python
class SummarizeThenVerify(AsyncNode):
async def prep_async(self, shared):
# Example: read a file asynchronously
doc_text = await read_file_async(shared["doc_path"])
return doc_text
async def exec_async(self, prep_res):
# Example: async LLM call
summary = await call_llm_async(f"Summarize: {prep_res}")
return summary
async def post_async(self, shared, prep_res, exec_res):
# Example: wait for user feedback
decision = await gather_user_feedback(exec_res)
if decision == "approve":
shared["summary"] = exec_res
return "approve"
return "deny"
summarize_node = SummarizeThenVerify()
final_node = Finalize()
# Define transitions
summarize_node - "approve" >> final_node
summarize_node - "deny" >> summarize_node # retry
flow = AsyncFlow(start=summarize_node)
async def main():
shared = {"doc_path": "document.txt"}
await flow.run_async(shared)
print("Final Summary:", shared.get("summary"))
asyncio.run(main())
```
================================================
File: docs/core_abstraction/batch.md
================================================
---
layout: default
title: "Batch"
parent: "Core Abstraction"
nav_order: 4
---
# Batch
**Batch** makes it easier to handle large inputs in one Node or **rerun** a Flow multiple times. Example use cases:
- **Chunk-based** processing (e.g., splitting large texts).
- **Iterative** processing over lists of input items (e.g., user queries, files, URLs).
## 1. BatchNode
A **BatchNode** extends `Node` but changes `prep()` and `exec()`:
- **`prep(shared)`**: returns an **iterable** (e.g., list, generator).
- **`exec(item)`**: called **once** per item in that iterable.
- **`post(shared, prep_res, exec_res_list)`**: after all items are processed, receives a **list** of results (`exec_res_list`) and returns an **Action**.
### Example: Summarize a Large File
```python
class MapSummaries(BatchNode):
def prep(self, shared):
# Suppose we have a big file; chunk it
content = shared["data"]
chunk_size = 10000
chunks = [content[i:i+chunk_size] for i in range(0, len(content), chunk_size)]
return chunks
def exec(self, chunk):
prompt = f"Summarize this chunk in 10 words: {chunk}"
summary = call_llm(prompt)
return summary
def post(self, shared, prep_res, exec_res_list):
combined = "\n".join(exec_res_list)
shared["summary"] = combined
return "default"
map_summaries = MapSummaries()
flow = Flow(start=map_summaries)
flow.run(shared)
```
---
## 2. BatchFlow
A **BatchFlow** runs a **Flow** multiple times, each time with different `params`. Think of it as a loop that replays the Flow for each parameter set.
### Example: Summarize Many Files
```python
class SummarizeAllFiles(BatchFlow):
def prep(self, shared):
# Return a list of param dicts (one per file)
filenames = list(shared["data"].keys()) # e.g., ["file1.txt", "file2.txt", ...]
return [{"filename": fn} for fn in filenames]
# Suppose we have a per-file Flow (e.g., load_file >> summarize >> reduce):
summarize_file = SummarizeFile(start=load_file)
# Wrap that flow into a BatchFlow:
summarize_all_files = SummarizeAllFiles(start=summarize_file)
summarize_all_files.run(shared)
```
### Under the Hood
1. `prep(shared)` returns a list of param dicts—e.g., `[{filename: "file1.txt"}, {filename: "file2.txt"}, ...]`.
2. The **BatchFlow** loops through each dict. For each one:
- It merges the dict with the BatchFlow’s own `params`.
- It calls `flow.run(shared)` using the merged result.
3. This means the sub-Flow is run **repeatedly**, once for every param dict.
---
## 3. Nested or Multi-Level Batches
You can nest a **BatchFlow** in another **BatchFlow**. For instance:
- **Outer** batch: returns a list of diretory param dicts (e.g., `{"directory": "/pathA"}`, `{"directory": "/pathB"}`, ...).
- **Inner** batch: returning a list of per-file param dicts.
At each level, **BatchFlow** merges its own param dict with the parent’s. By the time you reach the **innermost** node, the final `params` is the merged result of **all** parents in the chain. This way, a nested structure can keep track of the entire context (e.g., directory + file name) at once.
```python
class FileBatchFlow(BatchFlow):
def prep(self, shared):
directory = self.params["directory"]
# e.g., files = ["file1.txt", "file2.txt", ...]
files = [f for f in os.listdir(directory) if f.endswith(".txt")]
return [{"filename": f} for f in files]
class DirectoryBatchFlow(BatchFlow):
def prep(self, shared):
directories = [ "/path/to/dirA", "/path/to/dirB"]
return [{"directory": d} for d in directories]
# MapSummaries have params like {"directory": "/path/to/dirA", "filename": "file1.txt"}
inner_flow = FileBatchFlow(start=MapSummaries())
outer_flow = DirectoryBatchFlow(start=inner_flow)
```
================================================
File: docs/core_abstraction/communication.md
================================================
---
layout: default
title: "Communication"
parent: "Core Abstraction"
nav_order: 3
---
# Communication
Nodes and Flows **communicate** in 2 ways:
1. **Shared Store (for almost all the cases)**
- A global data structure (often an in-mem dict) that all nodes can read ( `prep()`) and write (`post()`).
- Great for data results, large content, or anything multiple nodes need.
- You shall design the data structure and populate it ahead.
- > **Separation of Concerns:** Use `Shared Store` for almost all cases to separate *Data Schema* from *Compute Logic*! This approach is both flexible and easy to manage, resulting in more maintainable code. `Params` is more a syntax sugar for [Batch](./batch.md).
{: .best-practice }
2. **Params (only for [Batch](./batch.md))**
- Each node has a local, ephemeral `params` dict passed in by the **parent Flow**, used as an identifier for tasks. Parameter keys and values shall be **immutable**.
- Good for identifiers like filenames or numeric IDs, in Batch mode.
If you know memory management, think of the **Shared Store** like a **heap** (shared by all function calls), and **Params** like a **stack** (assigned by the caller).
---
## 1. Shared Store
### Overview
A shared store is typically an in-mem dictionary, like:
```python
shared = {"data": {}, "summary": {}, "config": {...}, ...}
```
It can also contain local file handlers, DB connections, or a combination for persistence. We recommend deciding the data structure or DB schema first based on your app requirements.
### Example
```python
class LoadData(Node):
def post(self, shared, prep_res, exec_res):
# We write data to shared store
shared["data"] = "Some text content"
return None
class Summarize(Node):
def prep(self, shared):
# We read data from shared store
return shared["data"]
def exec(self, prep_res):
# Call LLM to summarize
prompt = f"Summarize: {prep_res}"
summary = call_llm(prompt)
return summary
def post(self, shared, prep_res, exec_res):
# We write summary to shared store
shared["summary"] = exec_res
return "default"
load_data = LoadData()
summarize = Summarize()
load_data >> summarize
flow = Flow(start=load_data)
shared = {}
flow.run(shared)
```
Here:
- `LoadData` writes to `shared["data"]`.
- `Summarize` reads from `shared["data"]`, summarizes, and writes to `shared["summary"]`.
---
## 2. Params
**Params** let you store *per-Node* or *per-Flow* config that doesn't need to live in the shared store. They are:
- **Immutable** during a Node's run cycle (i.e., they don't change mid-`prep->exec->post`).
- **Set** via `set_params()`.
- **Cleared** and updated each time a parent Flow calls it.
> Only set the uppermost Flow params because others will be overwritten by the parent Flow.
>
> If you need to set child node params, see [Batch](./batch.md).
{: .warning }
Typically, **Params** are identifiers (e.g., file name, page number). Use them to fetch the task you assigned or write to a specific part of the shared store.
### Example
```python
# 1) Create a Node that uses params
class SummarizeFile(Node):
def prep(self, shared):
# Access the node's param
filename = self.params["filename"]
return shared["data"].get(filename, "")
def exec(self, prep_res):
prompt = f"Summarize: {prep_res}"
return call_llm(prompt)
def post(self, shared, prep_res, exec_res):
filename = self.params["filename"]
shared["summary"][filename] = exec_res
return "default"
# 2) Set params
node = SummarizeFile()
# 3) Set Node params directly (for testing)
node.set_params({"filename": "doc1.txt"})
node.run(shared)
# 4) Create Flow
flow = Flow(start=node)
# 5) Set Flow params (overwrites node params)
flow.set_params({"filename": "doc2.txt"})
flow.run(shared) # The node summarizes doc2, not doc1
```
================================================
File: docs/core_abstraction/flow.md
================================================
---
layout: default
title: "Flow"
parent: "Core Abstraction"
nav_order: 2
---
# Flow
A **Flow** orchestrates a graph of Nodes. You can chain Nodes in a sequence or create branching depending on the **Actions** returned from each Node's `post()`.
## 1. Action-based Transitions
Each Node's `post()` returns an **Action** string. By default, if `post()` doesn't return anything, we treat that as `"default"`.
You define transitions with the syntax:
1. **Basic default transition**: `node_a >> node_b`
This means if `node_a.post()` returns `"default"`, go to `node_b`.
(Equivalent to `node_a - "default" >> node_b`)
2. **Named action transition**: `node_a - "action_name" >> node_b`
This means if `node_a.post()` returns `"action_name"`, go to `node_b`.
It's possible to create loops, branching, or multi-step flows.
## 2. Creating a Flow
A **Flow** begins with a **start** node. You call `Flow(start=some_node)` to specify the entry point. When you call `flow.run(shared)`, it executes the start node, looks at its returned Action from `post()`, follows the transition, and continues until there's no next node.
### Example: Simple Sequence
Here's a minimal flow of two nodes in a chain:
```python
node_a >> node_b
flow = Flow(start=node_a)
flow.run(shared)
```
- When you run the flow, it executes `node_a`.
- Suppose `node_a.post()` returns `"default"`.
- The flow then sees `"default"` Action is linked to `node_b` and runs `node_b`.
- `node_b.post()` returns `"default"` but we didn't define `node_b >> something_else`. So the flow ends there.
### Example: Branching & Looping
Here's a simple expense approval flow that demonstrates branching and looping. The `ReviewExpense` node can return three possible Actions:
- `"approved"`: expense is approved, move to payment processing
- `"needs_revision"`: expense needs changes, send back for revision
- `"rejected"`: expense is denied, finish the process
We can wire them like this:
```python
# Define the flow connections
review - "approved" >> payment # If approved, process payment
review - "needs_revision" >> revise # If needs changes, go to revision
review - "rejected" >> finish # If rejected, finish the process
revise >> review # After revision, go back for another review
payment >> finish # After payment, finish the process
flow = Flow(start=review)
```
Let's see how it flows:
1. If `review.post()` returns `"approved"`, the expense moves to the `payment` node
2. If `review.post()` returns `"needs_revision"`, it goes to the `revise` node, which then loops back to `review`
3. If `review.post()` returns `"rejected"`, it moves to the `finish` node and stops
```mermaid
flowchart TD
review[Review Expense] -->|approved| payment[Process Payment]
review -->|needs_revision| revise[Revise Report]
review -->|rejected| finish[Finish Process]
revise --> review
payment --> finish
```
### Running Individual Nodes vs. Running a Flow
- `node.run(shared)`: Just runs that node alone (calls `prep->exec->post()`), returns an Action.
- `flow.run(shared)`: Executes from the start node, follows Actions to the next node, and so on until the flow can't continue.
> `node.run(shared)` **does not** proceed to the successor.
> This is mainly for debugging or testing a single node.
>
> Always use `flow.run(...)` in production to ensure the full pipeline runs correctly.
{: .warning }
## 3. Nested Flows
A **Flow** can act like a Node, which enables powerful composition patterns. This means you can:
1. Use a Flow as a Node within another Flow's transitions.
2. Combine multiple smaller Flows into a larger Flow for reuse.
3. Node `params` will be a merging of **all** parents' `params`.
### Flow's Node Methods
A **Flow** is also a **Node**, so it will run `prep()` and `post()`. However:
- It **won't** run `exec()`, as its main logic is to orchestrate its nodes.
- `post()` always receives `None` for `exec_res` and should instead get the flow execution results from the shared store.
### Basic Flow Nesting
Here's how to connect a flow to another node:
```python
# Create a sub-flow
node_a >> node_b
subflow = Flow(start=node_a)
# Connect it to another node
subflow >> node_c
# Create the parent flow
parent_flow = Flow(start=subflow)
```
When `parent_flow.run()` executes:
1. It starts `subflow`
2. `subflow` runs through its nodes (`node_a->node_b`)
3. After `subflow` completes, execution continues to `node_c`
### Example: Order Processing Pipeline
Here's a practical example that breaks down order processing into nested flows:
```python
# Payment processing sub-flow
validate_payment >> process_payment >> payment_confirmation
payment_flow = Flow(start=validate_payment)
# Inventory sub-flow
check_stock >> reserve_items >> update_inventory
inventory_flow = Flow(start=check_stock)
# Shipping sub-flow
create_label >> assign_carrier >> schedule_pickup
shipping_flow = Flow(start=create_label)
# Connect the flows into a main order pipeline
payment_flow >> inventory_flow >> shipping_flow
# Create the master flow
order_pipeline = Flow(start=payment_flow)
# Run the entire pipeline
order_pipeline.run(shared_data)
```
This creates a clean separation of concerns while maintaining a clear execution path:
```mermaid
flowchart LR
subgraph order_pipeline[Order Pipeline]
subgraph paymentFlow["Payment Flow"]
A[Validate Payment] --> B[Process Payment] --> C[Payment Confirmation]
end
subgraph inventoryFlow["Inventory Flow"]
D[Check Stock] --> E[Reserve Items] --> F[Update Inventory]
end
subgraph shippingFlow["Shipping Flow"]
G[Create Label] --> H[Assign Carrier] --> I[Schedule Pickup]
end
paymentFlow --> inventoryFlow
inventoryFlow --> shippingFlow
end
```
================================================
File: docs/core_abstraction/node.md
================================================
---
layout: default
title: "Node"
parent: "Core Abstraction"
nav_order: 1
---
# Node
A **Node** is the smallest building block. Each Node has 3 steps `prep->exec->post`:
1. `prep(shared)`
- **Read and preprocess data** from `shared` store.
- Examples: *query DB, read files, or serialize data into a string*.
- Return `prep_res`, which is used by `exec()` and `post()`.
2. `exec(prep_res)`
- **Execute compute logic**, with optional retries and error handling (below).
- Examples: *(mostly) LLM calls, remote APIs, tool use*.
- ⚠️ This shall be only for compute and **NOT** access `shared`.
- ⚠️ If retries enabled, ensure idempotent implementation.
- Return `exec_res`, which is passed to `post()`.
3. `post(shared, prep_res, exec_res)`
- **Postprocess and write data** back to `shared`.
- Examples: *update DB, change states, log results*.
- **Decide the next action** by returning a *string* (`action = "default"` if *None*).
> **Why 3 steps?** To enforce the principle of *separation of concerns*. The data storage and data processing are operated separately.
>
> All steps are *optional*. E.g., you can only implement `prep` and `post` if you just need to process data.
{: .note }
### Fault Tolerance & Retries
You can **retry** `exec()` if it raises an exception via two parameters when define the Node:
- `max_retries` (int): Max times to run `exec()`. The default is `1` (**no** retry).
- `wait` (int): The time to wait (in **seconds**) before next retry. By default, `wait=0` (no waiting).
`wait` is helpful when you encounter rate-limits or quota errors from your LLM provider and need to back off.
```python
my_node = SummarizeFile(max_retries=3, wait=10)
```
When an exception occurs in `exec()`, the Node automatically retries until:
- It either succeeds, or
- The Node has retried `max_retries - 1` times already and fails on the last attempt.
You can get the current retry times (0-based) from `self.cur_retry`.
```python
class RetryNode(Node):
def exec(self, prep_res):
print(f"Retry {self.cur_retry} times")
raise Exception("Failed")
```
### Graceful Fallback
To **gracefully handle** the exception (after all retries) rather than raising it, override:
```python
def exec_fallback(self, prep_res, exc):
raise exc
```
By default, it just re-raises exception. But you can return a fallback result instead, which becomes the `exec_res` passed to `post()`.
### Example: Summarize file
```python
class SummarizeFile(Node):
def prep(self, shared):
return shared["data"]
def exec(self, prep_res):
if not prep_res:
return "Empty file content"
prompt = f"Summarize this text in 10 words: {prep_res}"
summary = call_llm(prompt) # might fail
return summary
def exec_fallback(self, prep_res, exc):
# Provide a simple fallback instead of crashing
return "There was an error processing your request."
def post(self, shared, prep_res, exec_res):
shared["summary"] = exec_res
# Return "default" by not returning
summarize_node = SummarizeFile(max_retries=3)
# node.run() calls prep->exec->post
# If exec() fails, it retries up to 3 times before calling exec_fallback()
action_result = summarize_node.run(shared)
print("Action returned:", action_result) # "default"
print("Summary stored:", shared["summary"])
```
================================================
File: docs/core_abstraction/parallel.md
================================================
---
layout: default
title: "(Advanced) Parallel"
parent: "Core Abstraction"
nav_order: 6
---
# (Advanced) Parallel
**Parallel** Nodes and Flows let you run multiple **Async** Nodes and Flows **concurrently**—for example, summarizing multiple texts at once. This can improve performance by overlapping I/O and compute.
> Because of Python’s GIL, parallel nodes and flows can’t truly parallelize CPU-bound tasks (e.g., heavy numerical computations). However, they excel at overlapping I/O-bound work—like LLM calls, database queries, API requests, or file I/O.
{: .warning }
> - **Ensure Tasks Are Independent**: If each item depends on the output of a previous item, **do not** parallelize.
>
> - **Beware of Rate Limits**: Parallel calls can **quickly** trigger rate limits on LLM services. You may need a **throttling** mechanism (e.g., semaphores or sleep intervals).
>
> - **Consider Single-Node Batch APIs**: Some LLMs offer a **batch inference** API where you can send multiple prompts in a single call. This is more complex to implement but can be more efficient than launching many parallel requests and mitigates rate limits.
{: .best-practice }
## AsyncParallelBatchNode
Like **AsyncBatchNode**, but run `exec_async()` in **parallel**:
```python
class ParallelSummaries(AsyncParallelBatchNode):
async def prep_async(self, shared):
# e.g., multiple texts
return shared["texts"]
async def exec_async(self, text):
prompt = f"Summarize: {text}"
return await call_llm_async(prompt)
async def post_async(self, shared, prep_res, exec_res_list):
shared["summary"] = "\n\n".join(exec_res_list)
return "default"
node = ParallelSummaries()
flow = AsyncFlow(start=node)
```
## AsyncParallelBatchFlow
Parallel version of **BatchFlow**. Each iteration of the sub-flow runs **concurrently** using different parameters:
```python
class SummarizeMultipleFiles(AsyncParallelBatchFlow):
async def prep_async(self, shared):
return [{"filename": f} for f in shared["files"]]
sub_flow = AsyncFlow(start=LoadAndSummarizeFile())
parallel_flow = SummarizeMultipleFiles(start=sub_flow)
await parallel_flow.run_async(shared)
```
================================================
File: docs/design_pattern/agent.md
================================================
---
layout: default
title: "Agent"
parent: "Design Pattern"
nav_order: 1
---
# Agent
Agent is a powerful design pattern in which nodes can take dynamic actions based on the context.
## Implement Agent with Graph
1. **Context and Action:** Implement nodes that supply context and perform actions.
2. **Branching:** Use branching to connect each action node to an agent node. Use action to allow the agent to direct the [flow](../core_abstraction/flow.md) between nodes—and potentially loop back for multi-step.
3. **Agent Node:** Provide a prompt to decide action—for example:
```python
f"""
### CONTEXT
Task: {task_description}
Previous Actions: {previous_actions}
Current State: {current_state}
### ACTION SPACE
[1] search
Description: Use web search to get results
Parameters:
- query (str): What to search for
[2] answer
Description: Conclude based on the results
Parameters:
- result (str): Final answer to provide
### NEXT ACTION
Decide the next action based on the current context and available action space.
Return your response in the following format:
```yaml
thinking: |
action:
parameters:
:
```"""
```
The core of building **high-performance** and **reliable** agents boils down to:
1. **Context Management:** Provide *relevant, minimal context.* For example, rather than including an entire chat history, retrieve the most relevant via [RAG](./rag.md). Even with larger context windows, LLMs still fall victim to ["lost in the middle"](https://arxiv.org/abs/2307.03172), overlooking mid-prompt content.
2. **Action Space:** Provide *a well-structured and unambiguous* set of actions—avoiding overlap like separate `read_databases` or `read_csvs`. Instead, import CSVs into the database.
## Example Good Action Design
- **Incremental:** Feed content in manageable chunks (500 lines or 1 page) instead of all at once.
- **Overview-zoom-in:** First provide high-level structure (table of contents, summary), then allow drilling into details (raw texts).
- **Parameterized/Programmable:** Instead of fixed actions, enable parameterized (columns to select) or programmable (SQL queries) actions, for example, to read CSV files.
- **Backtracking:** Let the agent undo the last step instead of restarting entirely, preserving progress when encountering errors or dead ends.
## Example: Search Agent
This agent:
1. Decides whether to search or answer
2. If searches, loops back to decide if more search needed
3. Answers when enough context gathered
```python
class DecideAction(Node):
def prep(self, shared):
context = shared.get("context", "No previous search")
query = shared["query"]
return query, context
def exec(self, inputs):
query, context = inputs
prompt = f"""
Given input: {query}
Previous search results: {context}
Should I: 1) Search web for more info 2) Answer with current knowledge
Output in yaml:
```yaml
action: search/answer
reason: why this action
search_term: search phrase if action is search
```"""
resp = call_llm(prompt)
yaml_str = resp.split("```yaml")[1].split("```")[0].strip()
result = yaml.safe_load(yaml_str)
assert isinstance(result, dict)
assert "action" in result
assert "reason" in result
assert result["action"] in ["search", "answer"]
if result["action"] == "search":
assert "search_term" in result
return result
def post(self, shared, prep_res, exec_res):
if exec_res["action"] == "search":
shared["search_term"] = exec_res["search_term"]
return exec_res["action"]
class SearchWeb(Node):
def prep(self, shared):
return shared["search_term"]
def exec(self, search_term):
return search_web(search_term)
def post(self, shared, prep_res, exec_res):
prev_searches = shared.get("context", [])
shared["context"] = prev_searches + [
{"term": shared["search_term"], "result": exec_res}
]
return "decide"
class DirectAnswer(Node):
def prep(self, shared):
return shared["query"], shared.get("context", "")
def exec(self, inputs):
query, context = inputs
return call_llm(f"Context: {context}\nAnswer: {query}")
def post(self, shared, prep_res, exec_res):
print(f"Answer: {exec_res}")
shared["answer"] = exec_res
# Connect nodes
decide = DecideAction()
search = SearchWeb()
answer = DirectAnswer()
decide - "search" >> search
decide - "answer" >> answer
search - "decide" >> decide # Loop back
flow = Flow(start=decide)
flow.run({"query": "Who won the Nobel Prize in Physics 2024?"})
```
================================================
File: docs/design_pattern/mapreduce.md
================================================
---
layout: default
title: "Map Reduce"
parent: "Design Pattern"
nav_order: 4
---
# Map Reduce
MapReduce is a design pattern suitable when you have either:
- Large input data (e.g., multiple files to process), or
- Large output data (e.g., multiple forms to fill)
and there is a logical way to break the task into smaller, ideally independent parts.
You first break down the task using [BatchNode](../core_abstraction/batch.md) in the map phase, followed by aggregation in the reduce phase.
### Example: Document Summarization
```python
class SummarizeAllFiles(BatchNode):
def prep(self, shared):
files_dict = shared["files"] # e.g. 10 files
return list(files_dict.items()) # [("file1.txt", "aaa..."), ("file2.txt", "bbb..."), ...]
def exec(self, one_file):
filename, file_content = one_file
summary_text = call_llm(f"Summarize the following file:\n{file_content}")
return (filename, summary_text)
def post(self, shared, prep_res, exec_res_list):
shared["file_summaries"] = dict(exec_res_list)
class CombineSummaries(Node):
def prep(self, shared):
return shared["file_summaries"]
def exec(self, file_summaries):
# format as: "File1: summary\nFile2: summary...\n"
text_list = []
for fname, summ in file_summaries.items():
text_list.append(f"{fname} summary:\n{summ}\n")
big_text = "\n---\n".join(text_list)
return call_llm(f"Combine these file summaries into one final summary:\n{big_text}")
def post(self, shared, prep_res, final_summary):
shared["all_files_summary"] = final_summary
batch_node = SummarizeAllFiles()
combine_node = CombineSummaries()
batch_node >> combine_node
flow = Flow(start=batch_node)
shared = {
"files": {
"file1.txt": "Alice was beginning to get very tired of sitting by her sister...",
"file2.txt": "Some other interesting text ...",
# ...
}
}
flow.run(shared)
print("Individual Summaries:", shared["file_summaries"])
print("\nFinal Summary:\n", shared["all_files_summary"])
```
================================================
File: docs/design_pattern/multi_agent.md
================================================
---
layout: default
title: "(Advanced) Multi-Agents"
parent: "Design Pattern"
nav_order: 6
---
# (Advanced) Multi-Agents
Multiple [Agents](./flow.md) can work together by handling subtasks and communicating the progress.
Communication between agents is typically implemented using message queues in shared storage.
> Most of time, you don't need Multi-Agents. Start with a simple solution first.
{: .best-practice }
### Example Agent Communication: Message Queue
Here's a simple example showing how to implement agent communication using `asyncio.Queue`.
The agent listens for messages, processes them, and continues listening:
```python
class AgentNode(AsyncNode):
async def prep_async(self, _):
message_queue = self.params["messages"]
message = await message_queue.get()
print(f"Agent received: {message}")
return message
# Create node and flow
agent = AgentNode()
agent >> agent # connect to self
flow = AsyncFlow(start=agent)
# Create heartbeat sender
async def send_system_messages(message_queue):
counter = 0
messages = [
"System status: all systems operational",
"Memory usage: normal",
"Network connectivity: stable",
"Processing load: optimal"
]
while True:
message = f"{messages[counter % len(messages)]} | timestamp_{counter}"
await message_queue.put(message)
counter += 1
await asyncio.sleep(1)
async def main():
message_queue = asyncio.Queue()
shared = {}
flow.set_params({"messages": message_queue})
# Run both coroutines
await asyncio.gather(
flow.run_async(shared),
send_system_messages(message_queue)
)
asyncio.run(main())
```
The output:
```
Agent received: System status: all systems operational | timestamp_0
Agent received: Memory usage: normal | timestamp_1
Agent received: Network connectivity: stable | timestamp_2
Agent received: Processing load: optimal | timestamp_3
```
### Interactive Multi-Agent Example: Taboo Game
Here's a more complex example where two agents play the word-guessing game Taboo.
One agent provides hints while avoiding forbidden words, and another agent tries to guess the target word:
```python
class AsyncHinter(AsyncNode):
async def prep_async(self, shared):
guess = await shared["hinter_queue"].get()
if guess == "GAME_OVER":
return None
return shared["target_word"], shared["forbidden_words"], shared.get("past_guesses", [])
async def exec_async(self, inputs):
if inputs is None:
return None
target, forbidden, past_guesses = inputs
prompt = f"Generate hint for '{target}'\nForbidden words: {forbidden}"
if past_guesses:
prompt += f"\nPrevious wrong guesses: {past_guesses}\nMake hint more specific."
prompt += "\nUse at most 5 words."
hint = call_llm(prompt)
print(f"\nHinter: Here's your hint - {hint}")
return hint
async def post_async(self, shared, prep_res, exec_res):
if exec_res is None:
return "end"
await shared["guesser_queue"].put(exec_res)
return "continue"
class AsyncGuesser(AsyncNode):
async def prep_async(self, shared):
hint = await shared["guesser_queue"].get()
return hint, shared.get("past_guesses", [])
async def exec_async(self, inputs):
hint, past_guesses = inputs
prompt = f"Given hint: {hint}, past wrong guesses: {past_guesses}, make a new guess. Directly reply a single word:"
guess = call_llm(prompt)
print(f"Guesser: I guess it's - {guess}")
return guess
async def post_async(self, shared, prep_res, exec_res):
if exec_res.lower() == shared["target_word"].lower():
print("Game Over - Correct guess!")
await shared["hinter_queue"].put("GAME_OVER")
return "end"
if "past_guesses" not in shared:
shared["past_guesses"] = []
shared["past_guesses"].append(exec_res)
await shared["hinter_queue"].put(exec_res)
return "continue"
async def main():
# Set up game
shared = {
"target_word": "nostalgia",
"forbidden_words": ["memory", "past", "remember", "feeling", "longing"],
"hinter_queue": asyncio.Queue(),
"guesser_queue": asyncio.Queue()
}
print("Game starting!")
print(f"Target word: {shared['target_word']}")
print(f"Forbidden words: {shared['forbidden_words']}")
# Initialize by sending empty guess to hinter
await shared["hinter_queue"].put("")
# Create nodes and flows
hinter = AsyncHinter()
guesser = AsyncGuesser()
# Set up flows
hinter_flow = AsyncFlow(start=hinter)
guesser_flow = AsyncFlow(start=guesser)
# Connect nodes to themselves
hinter - "continue" >> hinter
guesser - "continue" >> guesser
# Run both agents concurrently
await asyncio.gather(
hinter_flow.run_async(shared),
guesser_flow.run_async(shared)
)
asyncio.run(main())
```
The Output:
```
Game starting!
Target word: nostalgia
Forbidden words: ['memory', 'past', 'remember', 'feeling', 'longing']
Hinter: Here's your hint - Thinking of childhood summer days
Guesser: I guess it's - popsicle
Hinter: Here's your hint - When childhood cartoons make you emotional
Guesser: I guess it's - nostalgic
Hinter: Here's your hint - When old songs move you
Guesser: I guess it's - memories
Hinter: Here's your hint - That warm emotion about childhood
Guesser: I guess it's - nostalgia
Game Over - Correct guess!
```
================================================
File: docs/design_pattern/rag.md
================================================
---
layout: default
title: "RAG"
parent: "Design Pattern"
nav_order: 3
---
# RAG (Retrieval Augmented Generation)
For certain LLM tasks like answering questions, providing relevant context is essential. One common architecture is a **two-stage** RAG pipeline:
1. **Offline stage**: Preprocess and index documents ("building the index").
2. **Online stage**: Given a question, generate answers by retrieving the most relevant context.
---
## Stage 1: Offline Indexing
We create three Nodes:
1. `ChunkDocs` – [chunks](../utility_function/chunking.md) raw text.
2. `EmbedDocs` – [embeds](../utility_function/embedding.md) each chunk.
3. `StoreIndex` – stores embeddings into a [vector database](../utility_function/vector.md).
```python
class ChunkDocs(BatchNode):
def prep(self, shared):
# A list of file paths in shared["files"]. We process each file.
return shared["files"]
def exec(self, filepath):
# read file content. In real usage, do error handling.
with open(filepath, "r", encoding="utf-8") as f:
text = f.read()
# chunk by 100 chars each
chunks = []
size = 100
for i in range(0, len(text), size):
chunks.append(text[i : i + size])
return chunks
def post(self, shared, prep_res, exec_res_list):
# exec_res_list is a list of chunk-lists, one per file.
# flatten them all into a single list of chunks.
all_chunks = []
for chunk_list in exec_res_list:
all_chunks.extend(chunk_list)
shared["all_chunks"] = all_chunks
class EmbedDocs(BatchNode):
def prep(self, shared):
return shared["all_chunks"]
def exec(self, chunk):
return get_embedding(chunk)
def post(self, shared, prep_res, exec_res_list):
# Store the list of embeddings.
shared["all_embeds"] = exec_res_list
print(f"Total embeddings: {len(exec_res_list)}")
class StoreIndex(Node):
def prep(self, shared):
# We'll read all embeds from shared.
return shared["all_embeds"]
def exec(self, all_embeds):
# Create a vector index (faiss or other DB in real usage).
index = create_index(all_embeds)
return index
def post(self, shared, prep_res, index):
shared["index"] = index
# Wire them in sequence
chunk_node = ChunkDocs()
embed_node = EmbedDocs()
store_node = StoreIndex()
chunk_node >> embed_node >> store_node
OfflineFlow = Flow(start=chunk_node)
```
Usage example:
```python
shared = {
"files": ["doc1.txt", "doc2.txt"], # any text files
}
OfflineFlow.run(shared)
```
---
## Stage 2: Online Query & Answer
We have 3 nodes:
1. `EmbedQuery` – embeds the user’s question.
2. `RetrieveDocs` – retrieves top chunk from the index.
3. `GenerateAnswer` – calls the LLM with the question + chunk to produce the final answer.
```python
class EmbedQuery(Node):
def prep(self, shared):
return shared["question"]
def exec(self, question):
return get_embedding(question)
def post(self, shared, prep_res, q_emb):
shared["q_emb"] = q_emb
class RetrieveDocs(Node):
def prep(self, shared):
# We'll need the query embedding, plus the offline index/chunks
return shared["q_emb"], shared["index"], shared["all_chunks"]
def exec(self, inputs):
q_emb, index, chunks = inputs
I, D = search_index(index, q_emb, top_k=1)
best_id = I[0][0]
relevant_chunk = chunks[best_id]
return relevant_chunk
def post(self, shared, prep_res, relevant_chunk):
shared["retrieved_chunk"] = relevant_chunk
print("Retrieved chunk:", relevant_chunk[:60], "...")
class GenerateAnswer(Node):
def prep(self, shared):
return shared["question"], shared["retrieved_chunk"]
def exec(self, inputs):
question, chunk = inputs
prompt = f"Question: {question}\nContext: {chunk}\nAnswer:"
return call_llm(prompt)
def post(self, shared, prep_res, answer):
shared["answer"] = answer
print("Answer:", answer)
embed_qnode = EmbedQuery()
retrieve_node = RetrieveDocs()
generate_node = GenerateAnswer()
embed_qnode >> retrieve_node >> generate_node
OnlineFlow = Flow(start=embed_qnode)
```
Usage example:
```python
# Suppose we already ran OfflineFlow and have:
# shared["all_chunks"], shared["index"], etc.
shared["question"] = "Why do people like cats?"
OnlineFlow.run(shared)
# final answer in shared["answer"]
```
================================================
File: docs/design_pattern/structure.md
================================================
---
layout: default
title: "Structured Output"
parent: "Design Pattern"
nav_order: 5
---
# Structured Output
In many use cases, you may want the LLM to output a specific structure, such as a list or a dictionary with predefined keys.
There are several approaches to achieve a structured output:
- **Prompting** the LLM to strictly return a defined structure.
- Using LLMs that natively support **schema enforcement**.
- **Post-processing** the LLM's response to extract structured content.
In practice, **Prompting** is simple and reliable for modern LLMs.
### Example Use Cases
- Extracting Key Information
```yaml
product:
name: Widget Pro
price: 199.99
description: |
A high-quality widget designed for professionals.
Recommended for advanced users.
```
- Summarizing Documents into Bullet Points
```yaml
summary:
- This product is easy to use.
- It is cost-effective.
- Suitable for all skill levels.
```
- Generating Configuration Files
```yaml
server:
host: 127.0.0.1
port: 8080
ssl: true
```
## Prompt Engineering
When prompting the LLM to produce **structured** output:
1. **Wrap** the structure in code fences (e.g., `yaml`).
2. **Validate** that all required fields exist (and let `Node` handles retry).
### Example Text Summarization
```python
class SummarizeNode(Node):
def exec(self, prep_res):
# Suppose `prep_res` is the text to summarize.
prompt = f"""
Please summarize the following text as YAML, with exactly 3 bullet points
{prep_res}
Now, output:
```yaml
summary:
- bullet 1
- bullet 2
- bullet 3
```"""
response = call_llm(prompt)
yaml_str = response.split("```yaml")[1].split("```")[0].strip()
import yaml
structured_result = yaml.safe_load(yaml_str)
assert "summary" in structured_result
assert isinstance(structured_result["summary"], list)
return structured_result
```
> Besides using `assert` statements, another popular way to validate schemas is [Pydantic](https://github.com/pydantic/pydantic)
{: .note }
### Why YAML instead of JSON?
Current LLMs struggle with escaping. YAML is easier with strings since they don't always need quotes.
**In JSON**
```json
{
"dialogue": "Alice said: \"Hello Bob.\\nHow are you?\\nI am good.\""
}
```
- Every double quote inside the string must be escaped with `\"`.
- Each newline in the dialogue must be represented as `\n`.
**In YAML**
```yaml
dialogue: |
Alice said: "Hello Bob.
How are you?
I am good."
```
- No need to escape interior quotes—just place the entire text under a block literal (`|`).
- Newlines are naturally preserved without needing `\n`.
================================================
File: docs/design_pattern/workflow.md
================================================
---
layout: default
title: "Workflow"
parent: "Design Pattern"
nav_order: 2
---
# Workflow
Many real-world tasks are too complex for one LLM call. The solution is to **Task Decomposition**: decompose them into a [chain](../core_abstraction/flow.md) of multiple Nodes.
> - You don't want to make each task **too coarse**, because it may be *too complex for one LLM call*.
> - You don't want to make each task **too granular**, because then *the LLM call doesn't have enough context* and results are *not consistent across nodes*.
>
> You usually need multiple *iterations* to find the *sweet spot*. If the task has too many *edge cases*, consider using [Agents](./agent.md).
{: .best-practice }
### Example: Article Writing
```python
class GenerateOutline(Node):
def prep(self, shared): return shared["topic"]
def exec(self, topic): return call_llm(f"Create a detailed outline for an article about {topic}")
def post(self, shared, prep_res, exec_res): shared["outline"] = exec_res
class WriteSection(Node):
def prep(self, shared): return shared["outline"]
def exec(self, outline): return call_llm(f"Write content based on this outline: {outline}")
def post(self, shared, prep_res, exec_res): shared["draft"] = exec_res
class ReviewAndRefine(Node):
def prep(self, shared): return shared["draft"]
def exec(self, draft): return call_llm(f"Review and improve this draft: {draft}")
def post(self, shared, prep_res, exec_res): shared["final_article"] = exec_res
# Connect nodes
outline = GenerateOutline()
write = WriteSection()
review = ReviewAndRefine()
outline >> write >> review
# Create and run flow
writing_flow = Flow(start=outline)
shared = {"topic": "AI Safety"}
writing_flow.run(shared)
```
For *dynamic cases*, consider using [Agents](./agent.md).
================================================
File: docs/utility_function/chunking.md
================================================
---
layout: default
title: "Text Chunking"
parent: "Utility Function"
nav_order: 4
---
# Text Chunking
We recommend some implementations of commonly used text chunking approaches.
> Text Chunking is more a micro optimization, compared to the Flow Design.
>
> It's recommended to start with the Naive Chunking and optimize later.
{: .best-practice }
---
## Example Python Code Samples
### 1. Naive (Fixed-Size) Chunking
Splits text by a fixed number of words, ignoring sentence or semantic boundaries.
```python
def fixed_size_chunk(text, chunk_size=100):
chunks = []
for i in range(0, len(text), chunk_size):
chunks.append(text[i : i + chunk_size])
return chunks
```
However, sentences are often cut awkwardly, losing coherence.
### 2. Sentence-Based Chunking
```python
import nltk
def sentence_based_chunk(text, max_sentences=2):
sentences = nltk.sent_tokenize(text)
chunks = []
for i in range(0, len(sentences), max_sentences):
chunks.append(" ".join(sentences[i : i + max_sentences]))
return chunks
```
However, might not handle very long sentences or paragraphs well.
### 3. Other Chunking
- **Paragraph-Based**: Split text by paragraphs (e.g., newlines). Large paragraphs can create big chunks.
- **Semantic**: Use embeddings or topic modeling to chunk by semantic boundaries.
- **Agentic**: Use an LLM to decide chunk boundaries based on context or meaning.
================================================
File: docs/utility_function/embedding.md
================================================
---
layout: default
title: "Embedding"
parent: "Utility Function"
nav_order: 5
---
# Embedding
Below you will find an overview table of various text embedding APIs, along with example Python code.
> Embedding is more a micro optimization, compared to the Flow Design.
>
> It's recommended to start with the most convenient one and optimize later.
{: .best-practice }
| **API** | **Free Tier** | **Pricing Model** | **Docs** |
| --- | --- | --- | --- |
| **OpenAI** | ~$5 credit | ~$0.0001/1K tokens | [OpenAI Embeddings](https://platform.openai.com/docs/api-reference/embeddings) |
| **Azure OpenAI** | $200 credit | Same as OpenAI (~$0.0001/1K tokens) | [Azure OpenAI Embeddings](https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?tabs=portal) |
| **Google Vertex AI** | $300 credit | ~$0.025 / million chars | [Vertex AI Embeddings](https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings) |
| **AWS Bedrock** | No free tier, but AWS credits may apply | ~$0.00002/1K tokens (Titan V2) | [Amazon Bedrock](https://docs.aws.amazon.com/bedrock/) |
| **Cohere** | Limited free tier | ~$0.0001/1K tokens | [Cohere Embeddings](https://docs.cohere.com/docs/cohere-embed) |
| **Hugging Face** | ~$0.10 free compute monthly | Pay per second of compute | [HF Inference API](https://huggingface.co/docs/api-inference) |
| **Jina** | 1M tokens free | Pay per token after | [Jina Embeddings](https://jina.ai/embeddings/) |
## Example Python Code
### 1. OpenAI
```python
import openai
openai.api_key = "YOUR_API_KEY"
resp = openai.Embedding.create(model="text-embedding-ada-002", input="Hello world")
vec = resp["data"][0]["embedding"]
print(vec)
```
### 2. Azure OpenAI
```python
import openai
openai.api_type = "azure"
openai.api_base = "https://YOUR_RESOURCE_NAME.openai.azure.com"
openai.api_version = "2023-03-15-preview"
openai.api_key = "YOUR_AZURE_API_KEY"
resp = openai.Embedding.create(engine="ada-embedding", input="Hello world")
vec = resp["data"][0]["embedding"]
print(vec)
```
### 3. Google Vertex AI
```python
from vertexai.preview.language_models import TextEmbeddingModel
import vertexai
vertexai.init(project="YOUR_GCP_PROJECT_ID", location="us-central1")
model = TextEmbeddingModel.from_pretrained("textembedding-gecko@001")
emb = model.get_embeddings(["Hello world"])
print(emb[0])
```
### 4. AWS Bedrock
```python
import boto3, json
client = boto3.client("bedrock-runtime", region_name="us-east-1")
body = {"inputText": "Hello world"}
resp = client.invoke_model(modelId="amazon.titan-embed-text-v2:0", contentType="application/json", body=json.dumps(body))
resp_body = json.loads(resp["body"].read())
vec = resp_body["embedding"]
print(vec)
```
### 5. Cohere
```python
import cohere
co = cohere.Client("YOUR_API_KEY")
resp = co.embed(texts=["Hello world"])
vec = resp.embeddings[0]
print(vec)
```
### 6. Hugging Face
```python
import requests
API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"
HEADERS = {"Authorization": "Bearer YOUR_HF_TOKEN"}
res = requests.post(API_URL, headers=HEADERS, json={"inputs": "Hello world"})
vec = res.json()[0]
print(vec)
```
### 7. Jina
```python
import requests
url = "https://api.jina.ai/v2/embed"
headers = {"Authorization": "Bearer YOUR_JINA_TOKEN"}
payload = {"data": ["Hello world"], "model": "jina-embeddings-v3"}
res = requests.post(url, headers=headers, json=payload)
vec = res.json()["data"][0]["embedding"]
print(vec)
```
================================================
File: docs/utility_function/llm.md
================================================
---
layout: default
title: "LLM Wrapper"
parent: "Utility Function"
nav_order: 1
---
# LLM Wrappers
Check out libraries like [litellm](https://github.com/BerriAI/litellm).
Here, we provide some minimal example implementations:
1. OpenAI
```python
def call_llm(prompt):
from openai import OpenAI
client = OpenAI(api_key="YOUR_API_KEY_HERE")
r = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}]
)
return r.choices[0].message.content
# Example usage
call_llm("How are you?")
```
> Store the API key in an environment variable like OPENAI_API_KEY for security.
{: .best-practice }
2. Claude (Anthropic)
```python
def call_llm(prompt):
from anthropic import Anthropic
client = Anthropic(api_key="YOUR_API_KEY_HERE")
response = client.messages.create(
model="claude-2",
messages=[{"role": "user", "content": prompt}],
max_tokens=100
)
return response.content
```
3. Google (Generative AI Studio / PaLM API)
```python
def call_llm(prompt):
import google.generativeai as genai
genai.configure(api_key="YOUR_API_KEY_HERE")
response = genai.generate_text(
model="models/text-bison-001",
prompt=prompt
)
return response.result
```
4. Azure (Azure OpenAI)
```python
def call_llm(prompt):
from openai import AzureOpenAI
client = AzureOpenAI(
azure_endpoint="https://.openai.azure.com/",
api_key="YOUR_API_KEY_HERE",
api_version="2023-05-15"
)
r = client.chat.completions.create(
model="",
messages=[{"role": "user", "content": prompt}]
)
return r.choices[0].message.content
```
5. Ollama (Local LLM)
```python
def call_llm(prompt):
from ollama import chat
response = chat(
model="llama2",
messages=[{"role": "user", "content": prompt}]
)
return response.message.content
```
## Improvements
Feel free to enhance your `call_llm` function as needed. Here are examples:
- Handle chat history:
```python
def call_llm(messages):
from openai import OpenAI
client = OpenAI(api_key="YOUR_API_KEY_HERE")
r = client.chat.completions.create(
model="gpt-4o",
messages=messages
)
return r.choices[0].message.content
```
- Add in-memory caching
```python
from functools import lru_cache
@lru_cache(maxsize=1000)
def call_llm(prompt):
# Your implementation here
pass
```
> ⚠️ Caching conflicts with Node retries, as retries yield the same result.
>
> To address this, you could use cached results only if not retried.
{: .warning }
```python
from functools import lru_cache
@lru_cache(maxsize=1000)
def cached_call(prompt):
pass
def call_llm(prompt, use_cache):
if use_cache:
return cached_call(prompt)
# Call the underlying function directly
return cached_call.__wrapped__(prompt)
class SummarizeNode(Node):
def exec(self, text):
return call_llm(f"Summarize: {text}", self.cur_retry==0)
```
- Enable logging:
```python
def call_llm(prompt):
import logging
logging.info(f"Prompt: {prompt}")
response = ... # Your implementation here
logging.info(f"Response: {response}")
return response
```
================================================
File: docs/utility_function/text_to_speech.md
================================================
---
layout: default
title: "Text-to-Speech"
parent: "Utility Function"
nav_order: 7
---
# Text-to-Speech
| **Service** | **Free Tier** | **Pricing Model** | **Docs** |
|----------------------|-----------------------|--------------------------------------------------------------|---------------------------------------------------------------------|
| **Amazon Polly** | 5M std + 1M neural | ~$4 /M (std), ~$16 /M (neural) after free tier | [Polly Docs](https://aws.amazon.com/polly/) |
| **Google Cloud TTS** | 4M std + 1M WaveNet | ~$4 /M (std), ~$16 /M (WaveNet) pay-as-you-go | [Cloud TTS Docs](https://cloud.google.com/text-to-speech) |
| **Azure TTS** | 500K neural ongoing | ~$15 /M (neural), discount at higher volumes | [Azure TTS Docs](https://azure.microsoft.com/products/cognitive-services/text-to-speech/) |
| **IBM Watson TTS** | 10K chars Lite plan | ~$0.02 /1K (i.e. ~$20 /M). Enterprise options available | [IBM Watson Docs](https://www.ibm.com/cloud/watson-text-to-speech) |
| **ElevenLabs** | 10K chars monthly | From ~$5/mo (30K chars) up to $330/mo (2M chars). Enterprise | [ElevenLabs Docs](https://elevenlabs.io) |
## Example Python Code
### Amazon Polly
```python
import boto3
polly = boto3.client("polly", region_name="us-east-1",
aws_access_key_id="YOUR_AWS_ACCESS_KEY_ID",
aws_secret_access_key="YOUR_AWS_SECRET_ACCESS_KEY")
resp = polly.synthesize_speech(
Text="Hello from Polly!",
OutputFormat="mp3",
VoiceId="Joanna"
)
with open("polly.mp3", "wb") as f:
f.write(resp["AudioStream"].read())
```
### Google Cloud TTS
```python
from google.cloud import texttospeech
client = texttospeech.TextToSpeechClient()
input_text = texttospeech.SynthesisInput(text="Hello from Google Cloud TTS!")
voice = texttospeech.VoiceSelectionParams(language_code="en-US")
audio_cfg = texttospeech.AudioConfig(audio_encoding=texttospeech.AudioEncoding.MP3)
resp = client.synthesize_speech(input=input_text, voice=voice, audio_config=audio_cfg)
with open("gcloud_tts.mp3", "wb") as f:
f.write(resp.audio_content)
```
### Azure TTS
```python
import azure.cognitiveservices.speech as speechsdk
speech_config = speechsdk.SpeechConfig(
subscription="AZURE_KEY", region="AZURE_REGION")
audio_cfg = speechsdk.audio.AudioConfig(filename="azure_tts.wav")
synthesizer = speechsdk.SpeechSynthesizer(
speech_config=speech_config,
audio_config=audio_cfg
)
synthesizer.speak_text_async("Hello from Azure TTS!").get()
```
### IBM Watson TTS
```python
from ibm_watson import TextToSpeechV1
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
auth = IAMAuthenticator("IBM_API_KEY")
service = TextToSpeechV1(authenticator=auth)
service.set_service_url("IBM_SERVICE_URL")
resp = service.synthesize(
"Hello from IBM Watson!",
voice="en-US_AllisonV3Voice",
accept="audio/mp3"
).get_result()
with open("ibm_tts.mp3", "wb") as f:
f.write(resp.content)
```
### ElevenLabs
```python
import requests
api_key = "ELEVENLABS_KEY"
voice_id = "ELEVENLABS_VOICE"
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
headers = {"xi-api-key": api_key, "Content-Type": "application/json"}
json_data = {
"text": "Hello from ElevenLabs!",
"voice_settings": {"stability": 0.75, "similarity_boost": 0.75}
}
resp = requests.post(url, headers=headers, json=json_data)
with open("elevenlabs.mp3", "wb") as f:
f.write(resp.content)
```
================================================
File: docs/utility_function/vector.md
================================================
---
layout: default
title: "Vector Databases"
parent: "Utility Function"
nav_order: 6
---
# Vector Databases
Below is a table of the popular vector search solutions:
| **Tool** | **Free Tier** | **Pricing Model** | **Docs** |
| --- | --- | --- | --- |
| **FAISS** | N/A, self-host | Open-source | [Faiss.ai](https://faiss.ai) |
| **Pinecone** | 2GB free | From $25/mo | [pinecone.io](https://pinecone.io) |
| **Qdrant** | 1GB free cloud | Pay-as-you-go | [qdrant.tech](https://qdrant.tech) |
| **Weaviate** | 14-day sandbox | From $25/mo | [weaviate.io](https://weaviate.io) |
| **Milvus** | 5GB free cloud | PAYG or $99/mo dedicated | [milvus.io](https://milvus.io) |
| **Chroma** | N/A, self-host | Free (Apache 2.0) | [trychroma.com](https://trychroma.com) |
| **Redis** | 30MB free | From $5/mo | [redis.io](https://redis.io) |
---
## Example Python Code
Below are basic usage snippets for each tool.
### FAISS
```python
import faiss
import numpy as np
# Dimensionality of embeddings
d = 128
# Create a flat L2 index
index = faiss.IndexFlatL2(d)
# Random vectors
data = np.random.random((1000, d)).astype('float32')
index.add(data)
# Query
query = np.random.random((1, d)).astype('float32')
D, I = index.search(query, k=5)
print("Distances:", D)
print("Neighbors:", I)
```
### Pinecone
```python
import pinecone
pinecone.init(api_key="YOUR_API_KEY", environment="YOUR_ENV")
index_name = "my-index"
# Create the index if it doesn't exist
if index_name not in pinecone.list_indexes():
pinecone.create_index(name=index_name, dimension=128)
# Connect
index = pinecone.Index(index_name)
# Upsert
vectors = [
("id1", [0.1]*128),
("id2", [0.2]*128)
]
index.upsert(vectors)
# Query
response = index.query([[0.15]*128], top_k=3)
print(response)
```
### Qdrant
```python
import qdrant_client
from qdrant_client.models import Distance, VectorParams, PointStruct
client = qdrant_client.QdrantClient(
url="https://YOUR-QDRANT-CLOUD-ENDPOINT",
api_key="YOUR_API_KEY"
)
collection = "my_collection"
client.recreate_collection(
collection_name=collection,
vectors_config=VectorParams(size=128, distance=Distance.COSINE)
)
points = [
PointStruct(id=1, vector=[0.1]*128, payload={"type": "doc1"}),
PointStruct(id=2, vector=[0.2]*128, payload={"type": "doc2"}),
]
client.upsert(collection_name=collection, points=points)
results = client.search(
collection_name=collection,
query_vector=[0.15]*128,
limit=2
)
print(results)
```
### Weaviate
```python
import weaviate
client = weaviate.Client("https://YOUR-WEAVIATE-CLOUD-ENDPOINT")
schema = {
"classes": [
{
"class": "Article",
"vectorizer": "none"
}
]
}
client.schema.create(schema)
obj = {
"title": "Hello World",
"content": "Weaviate vector search"
}
client.data_object.create(obj, "Article", vector=[0.1]*128)
resp = (
client.query
.get("Article", ["title", "content"])
.with_near_vector({"vector": [0.15]*128})
.with_limit(3)
.do()
)
print(resp)
```
### Milvus
```python
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection
import numpy as np
connections.connect(alias="default", host="localhost", port="19530")
fields = [
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True),
FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128)
]
schema = CollectionSchema(fields)
collection = Collection("MyCollection", schema)
emb = np.random.rand(10, 128).astype('float32')
ids = list(range(10))
collection.insert([ids, emb])
index_params = {
"index_type": "IVF_FLAT",
"params": {"nlist": 128},
"metric_type": "L2"
}
collection.create_index("embedding", index_params)
collection.load()
query_emb = np.random.rand(1, 128).astype('float32')
results = collection.search(query_emb, "embedding", param={"nprobe": 10}, limit=3)
print(results)
```
### Chroma
```python
import chromadb
from chromadb.config import Settings
client = chromadb.Client(Settings(
chroma_db_impl="duckdb+parquet",
persist_directory="./chroma_data"
))
coll = client.create_collection("my_collection")
vectors = [[0.1, 0.2, 0.3], [0.2, 0.2, 0.2]]
metas = [{"doc": "text1"}, {"doc": "text2"}]
ids = ["id1", "id2"]
coll.add(embeddings=vectors, metadatas=metas, ids=ids)
res = coll.query(query_embeddings=[[0.15, 0.25, 0.3]], n_results=2)
print(res)
```
### Redis
```python
import redis
import struct
r = redis.Redis(host="localhost", port=6379)
# Create index
r.execute_command(
"FT.CREATE", "my_idx", "ON", "HASH",
"SCHEMA", "embedding", "VECTOR", "FLAT", "6",
"TYPE", "FLOAT32", "DIM", "128",
"DISTANCE_METRIC", "L2"
)
# Insert
vec = struct.pack('128f', *[0.1]*128)
r.hset("doc1", mapping={"embedding": vec})
# Search
qvec = struct.pack('128f', *[0.15]*128)
q = "*=>[KNN 3 @embedding $BLOB AS dist]"
res = r.ft("my_idx").search(q, query_params={"BLOB": qvec})
print(res.docs)
```
================================================
File: docs/utility_function/viz.md
================================================
---
layout: default
title: "Viz and Debug"
parent: "Utility Function"
nav_order: 2
---
# Visualization and Debugging
Similar to LLM wrappers, we **don't** provide built-in visualization and debugging. Here, we recommend some *minimal* (and incomplete) implementations These examples can serve as a starting point for your own tooling.
## 1. Visualization with Mermaid
This code recursively traverses the nested graph, assigns unique IDs to each node, and treats Flow nodes as subgraphs to generate Mermaid syntax for a hierarchical visualization.
{% raw %}
```python
def build_mermaid(start):
ids, visited, lines = {}, set(), ["graph LR"]
ctr = 1
def get_id(n):
nonlocal ctr
return ids[n] if n in ids else (ids.setdefault(n, f"N{ctr}"), (ctr := ctr + 1))[0]
def link(a, b):
lines.append(f" {a} --> {b}")
def walk(node, parent=None):
if node in visited:
return parent and link(parent, get_id(node))
visited.add(node)
if isinstance(node, Flow):
node.start and parent and link(parent, get_id(node.start))
lines.append(f"\n subgraph sub_flow_{get_id(node)}[{type(node).__name__}]")
node.start and walk(node.start)
for nxt in node.successors.values():
node.start and walk(nxt, get_id(node.start)) or (parent and link(parent, get_id(nxt))) or walk(nxt)
lines.append(" end\n")
else:
lines.append(f" {(nid := get_id(node))}['{type(node).__name__}']")
parent and link(parent, nid)
[walk(nxt, nid) for nxt in node.successors.values()]
walk(start)
return "\n".join(lines)
```
{% endraw %}
For example, suppose we have a complex Flow for data science:
```python
class DataPrepBatchNode(BatchNode):
def prep(self,shared): return []
class ValidateDataNode(Node): pass
class FeatureExtractionNode(Node): pass
class TrainModelNode(Node): pass
class EvaluateModelNode(Node): pass
class ModelFlow(Flow): pass
class DataScienceFlow(Flow):pass
feature_node = FeatureExtractionNode()
train_node = TrainModelNode()
evaluate_node = EvaluateModelNode()
feature_node >> train_node >> evaluate_node
model_flow = ModelFlow(start=feature_node)
data_prep_node = DataPrepBatchNode()
validate_node = ValidateDataNode()
data_prep_node >> validate_node >> model_flow
data_science_flow = DataScienceFlow(start=data_prep_node)
result = build_mermaid(start=data_science_flow)
```
The code generates a Mermaid diagram:
```mermaid
graph LR
subgraph sub_flow_N1[DataScienceFlow]
N2['DataPrepBatchNode']
N3['ValidateDataNode']
N2 --> N3
N3 --> N4
subgraph sub_flow_N5[ModelFlow]
N4['FeatureExtractionNode']
N6['TrainModelNode']
N4 --> N6
N7['EvaluateModelNode']
N6 --> N7
end
end
```
## 2. Call Stack Debugging
It would be useful to print the Node call stacks for debugging. This can be achieved by inspecting the runtime call stack:
```python
import inspect
def get_node_call_stack():
stack = inspect.stack()
node_names = []
seen_ids = set()
for frame_info in stack[1:]:
local_vars = frame_info.frame.f_locals
if 'self' in local_vars:
caller_self = local_vars['self']
if isinstance(caller_self, BaseNode) and id(caller_self) not in seen_ids:
seen_ids.add(id(caller_self))
node_names.append(type(caller_self).__name__)
return node_names
```
For example, suppose we have a complex Flow for data science:
```python
class DataPrepBatchNode(BatchNode):
def prep(self, shared): return []
class ValidateDataNode(Node): pass
class FeatureExtractionNode(Node): pass
class TrainModelNode(Node): pass
class EvaluateModelNode(Node):
def prep(self, shared):
stack = get_node_call_stack()
print("Call stack:", stack)
class ModelFlow(Flow): pass
class DataScienceFlow(Flow):pass
feature_node = FeatureExtractionNode()
train_node = TrainModelNode()
evaluate_node = EvaluateModelNode()
feature_node >> train_node >> evaluate_node
model_flow = ModelFlow(start=feature_node)
data_prep_node = DataPrepBatchNode()
validate_node = ValidateDataNode()
data_prep_node >> validate_node >> model_flow
data_science_flow = DataScienceFlow(start=data_prep_node)
data_science_flow.run({})
```
The output would be: `Call stack: ['EvaluateModelNode', 'ModelFlow', 'DataScienceFlow']`
================================================
File: docs/utility_function/websearch.md
================================================
---
layout: default
title: "Web Search"
parent: "Utility Function"
nav_order: 3
---
# Web Search
We recommend some implementations of commonly used web search tools.
| **API** | **Free Tier** | **Pricing Model** | **Docs** |
|---------------------------------|-----------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| **Google Custom Search JSON API** | 100 queries/day free | $5 per 1000 queries. | [Link](https://developers.google.com/custom-search/v1/overview) |
| **Bing Web Search API** | 1,000 queries/month | $15–$25 per 1,000 queries. | [Link](https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/) |
| **DuckDuckGo Instant Answer** | Completely free (Instant Answers only, **no URLs**) | No paid plans; usage unlimited, but data is limited | [Link](https://duckduckgo.com/api) |
| **Brave Search API** | 2,000 queries/month free | $3 per 1k queries for Base, $5 per 1k for Pro | [Link](https://brave.com/search/api/) |
| **SerpApi** | 100 searches/month free | Start at $75/month for 5,000 searches| [Link](https://serpapi.com/) |
| **RapidAPI** | Many options | Many options | [Link](https://rapidapi.com/search?term=search&sortBy=ByRelevance) |
## Example Python Code
### 1. Google Custom Search JSON API
```python
import requests
API_KEY = "YOUR_API_KEY"
CX_ID = "YOUR_CX_ID"
query = "example"
url = "https://www.googleapis.com/customsearch/v1"
params = {
"key": API_KEY,
"cx": CX_ID,
"q": query
}
response = requests.get(url, params=params)
results = response.json()
print(results)
```
### 2. Bing Web Search API
```python
import requests
SUBSCRIPTION_KEY = "YOUR_BING_API_KEY"
query = "example"
url = "https://api.bing.microsoft.com/v7.0/search"
headers = {"Ocp-Apim-Subscription-Key": SUBSCRIPTION_KEY}
params = {"q": query}
response = requests.get(url, headers=headers, params=params)
results = response.json()
print(results)
```
### 3. DuckDuckGo Instant Answer
```python
import requests
query = "example"
url = "https://api.duckduckgo.com/"
params = {
"q": query,
"format": "json"
}
response = requests.get(url, params=params)
results = response.json()
print(results)
```
### 4. Brave Search API
```python
import requests
SUBSCRIPTION_TOKEN = "YOUR_BRAVE_API_TOKEN"
query = "example"
url = "https://api.search.brave.com/res/v1/web/search"
headers = {
"X-Subscription-Token": SUBSCRIPTION_TOKEN
}
params = {
"q": query
}
response = requests.get(url, headers=headers, params=params)
results = response.json()
print(results)
```
### 5. SerpApi
```python
import requests
API_KEY = "YOUR_SERPAPI_KEY"
query = "example"
url = "https://serpapi.com/search"
params = {
"engine": "google",
"q": query,
"api_key": API_KEY
}
response = requests.get(url, params=params)
results = response.json()
print(results)
```
================================================
File: docs/_config.yml
================================================
# Basic site settings
title: Pocket Flow
tagline: A 100-line LLM framework
description: Minimalist LLM Framework in 100 Lines, Enabling LLMs to Program Themselves
# Theme settings
remote_theme: just-the-docs/just-the-docs
# Navigation
nav_sort: case_sensitive
# Aux links (shown in upper right)
aux_links:
"View on GitHub":
- "//github.com/the-pocket/PocketFlow"
# Color scheme
color_scheme: light
# Author settings
author:
name: Zachary Huang
url: https://www.columbia.edu/~zh2408/
twitter: ZacharyHuang12
# Mermaid settings
mermaid:
version: "9.1.3" # Pick the version you want
# Default configuration
config: |
directionLR
# Callouts settings
callouts:
warning:
title: Warning
color: red
note:
title: Note
color: blue
best-practice:
title: Best Practice
color: green
# The custom navigation
nav:
- Home: index.md # Link to your main docs index
- GitHub: "https://github.com/the-pocket/PocketFlow"
- Discord: "https://discord.gg/hUHHE9Sa6T"