import os import numpy as np from openai import OpenAI def get_embedding(text): client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY", "YOUR_API_KEY")) response = client.embeddings.create( model="text-embedding-ada-002", input=text ) # Extract the embedding vector from the response embedding = response.data[0].embedding # Convert to numpy array for consistency with other embedding functions return np.array(embedding, dtype=np.float32) if __name__ == "__main__": # Test the embedding function text1 = "The quick brown fox jumps over the lazy dog." text2 = "Python is a popular programming language for data science." emb1 = get_embedding(text1) emb2 = get_embedding(text2) print(f"Embedding 1 shape: {emb1.shape}") print(f"Embedding 2 shape: {emb2.shape}") # Calculate similarity (dot product) similarity = np.dot(emb1, emb2) print(f"Similarity between texts: {similarity:.4f}")