batch node

This commit is contained in:
zachary62 2024-12-25 23:02:24 +00:00
parent b257169d73
commit f802251246
1 changed files with 34 additions and 60 deletions

View File

@ -2,38 +2,33 @@ import asyncio
import warnings
class BaseNode:
"""
A base node that provides:
- preprocess()
- process()
- postprocess()
- run() -- just runs itself (no chaining)
"""
# preprocess(): this is for compute intensive preparation tasks, before the LLM call
# process(): this is for the LLM call, and should be idempotent for retries
# postprocess(): this is to summarize the result and retrun the condition for the successor node
def __init__(self):
self.parameters = {}
self.successors = {}
self.parameters, self.successors = {}, {}
def set_parameters(self, params):
self.parameters.update(params)
def set_parameters(self, params): # make sure params is immutable
self.parameters = params # must be immutable during pre/post/process
def add_successor(self, node, condition="default"):
if condition in self.successors:
print(f"Warning: overwriting existing successor for condition '{condition}'")
self.successors[condition] = node
warnings.warn(f"Overwriting existing successor for condition '{condition}'")
self.successors[condition] = node # maps condition -> successor node
return node
def preprocess(self, shared_storage):
return None
return None # will be passed to process() and postprocess()
def process(self, shared_storage, prep_result):
return None
return None # will be passed to postprocess()
def _process(self, shared_storage, prep_result):
# Could have retry logic or other wrap logic
return self.process(shared_storage, prep_result)
def postprocess(self, shared_storage, prep_result, proc_result):
return "default"
return "default" # condition for next node
def run(self, shared_storage=None):
prep = self.preprocess(shared_storage)
@ -41,42 +36,16 @@ class BaseNode:
return self.postprocess(shared_storage, prep, proc)
def __rshift__(self, other):
"""
For chaining with >> operator, e.g. node1 >> node2
"""
# chaining: node1 >> node2
return self.add_successor(other)
def __gt__(self, other):
"""
For chaining with > operator, e.g. node1 > "some_condition"
then >> node2
"""
if isinstance(other, str):
return _ConditionalTransition(self, other)
elif isinstance(other, BaseNode):
return self.add_successor(other)
raise TypeError("Unsupported operand type")
def __call__(self, condition):
"""
For node("condition") >> next_node syntax
"""
return _ConditionalTransition(self, condition)
def __sub__(self, condition):
"""
For chaining with - operator, e.g. node - "some_condition" >> next_node
"""
# condition-based chaining: node - "some_condition" >> next_node
if isinstance(condition, str):
return _ConditionalTransition(self, condition)
raise TypeError("Condition must be a string")
class _ConditionalTransition:
"""
Helper for Node > 'condition' >> AnotherNode style
(and also Node - 'condition' >> AnotherNode now).
"""
def __init__(self, source_node, condition):
self.source_node = source_node
self.condition = condition
@ -100,6 +69,22 @@ class Node(BaseNode):
if attempt == self.max_retries - 1:
return self.process_after_fail(shared_storage, data, e)
class BatchNode(Node):
def preprocess(self, shared_storage):
# return an iterable of items, one for each run
return []
def process(self, shared_storage, item): # process() is called for each item
return None
def _process(self, shared_storage, items):
results = []
for item in items:
# Here, 'item' is passed in place of 'prep_result' from the BaseNode's perspective.
r = super()._process(shared_storage, item)
results.append(r)
return results
class AsyncNode(Node):
"""
A Node whose postprocess step is async.
@ -199,7 +184,10 @@ class AsyncFlow(BaseFlow):
return self.postprocess(shared_storage, prep_result, None)
def run(self, shared_storage=None):
return asyncio.run(self.run_async(shared_storage))
try:
return asyncio.run(self.run_async(shared_storage))
except RuntimeError as e:
raise RuntimeError("If you are running in Jupyter, please use `await run_async()` instead of `run()`.") from e
class BaseBatchFlow(BaseFlow):
"""
@ -213,12 +201,6 @@ class BaseBatchFlow(BaseFlow):
"""
return []
def post_batch_run(self, all_results):
"""
Hook for after the entire batch is done, to combine results, etc.
"""
return all_results
class BatchFlow(BaseBatchFlow, Flow):
"""
Synchronous batch flow: calls the flow repeatedly
@ -243,10 +225,6 @@ class BatchFlow(BaseBatchFlow, Flow):
# Reset the parameters if needed
self.parameters = original_params
# Postprocess the entire batch
result = self.post_batch_run(all_results)
return self.postprocess(shared_storage, prep_result, result)
class BatchAsyncFlow(BaseBatchFlow, AsyncFlow):
"""
Asynchronous batch flow: calls the flow repeatedly in an async manner
@ -265,8 +243,4 @@ class BatchAsyncFlow(BaseBatchFlow, AsyncFlow):
all_results.append(f"Finished async run with parameters: {param_dict}")
# Reset back to original parameters if needed
self.parameters = original_params
# Combine or process results at the end
result = self.post_batch_run(all_results)
return self.postprocess(shared_storage, prep_result, result)
self.parameters = original_params