update design doc
This commit is contained in:
parent
687b046f0c
commit
eed7a86efa
|
|
@ -7,13 +7,13 @@ nav_order: 1
|
|||
|
||||
# LLM System Design Guidance
|
||||
|
||||
{: .important }
|
||||
> Use LLMs to help with system design and implementation wherever possible.
|
||||
|
||||
## Recommended LLM Project Structure:
|
||||
## Example LLM Project File Structure
|
||||
|
||||
```
|
||||
my_project/
|
||||
├── main.py
|
||||
├── flow.py
|
||||
├── utils/
|
||||
│ ├── __init__.py
|
||||
│ ├── call_llm.py
|
||||
|
|
@ -22,32 +22,96 @@ my_project/
|
|||
│ ├── __init__.py
|
||||
│ ├── test_flow.py
|
||||
│ └── test_nodes.py
|
||||
├── main.py
|
||||
├── flow.py
|
||||
├── requirements.txt
|
||||
└── docs/
|
||||
└── design.md
|
||||
```
|
||||
|
||||
|
||||
### `docs/`
|
||||
|
||||
Store the documentation of the project.
|
||||
|
||||
It should include a `design.md` file, which describes
|
||||
- Project requirements
|
||||
- Required utility functions
|
||||
- High-level flow with a mermaid diagram
|
||||
- Shared memory data structure
|
||||
- For each node, discuss
|
||||
- Node purpose and design (e.g., should it be a batch or async node?)
|
||||
- How the data shall be read (for `prep`) and written (for `post`)
|
||||
- How the data shall be processed (for `exec`)
|
||||
|
||||
### `utils/`
|
||||
|
||||
Houses functions for external API calls (e.g., LLMs, web searches, etc.).
|
||||
|
||||
It’s recommended to dedicate one Python file per API call, with names like `call_llm.py` or `search_web.py`. Each file should include:
|
||||
|
||||
- The function to call the API
|
||||
- A main function to run that API call
|
||||
|
||||
For instance, here’s a simplified `call_llm.py` example:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
def call_llm(prompt):
|
||||
client = OpenAI(api_key="YOUR_API_KEY_HERE")
|
||||
response = client.chat.completions.create(
|
||||
model="gpt-4o",
|
||||
messages=[{"role": "user", "content": prompt}]
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
def main():
|
||||
prompt = "Hello, how are you?"
|
||||
print(call_llm(prompt))
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
### `main.py`
|
||||
|
||||
Serves as the project’s entry point.
|
||||
|
||||
### `flow.py`
|
||||
|
||||
Implements the application’s flow, starting with node followed by the flow structure.
|
||||
|
||||
|
||||
### `tests/`
|
||||
|
||||
Optionally contains all tests. Use `pytest` for testing flows, nodes, and utility functions.
|
||||
For example, `test_call_llm.py` might look like:
|
||||
|
||||
```python
|
||||
from utils.call_llm import call_llm
|
||||
|
||||
def test_call_llm():
|
||||
prompt = "Hello, how are you?"
|
||||
assert call_llm(prompt) is not None
|
||||
```
|
||||
|
||||
## System Design Steps:
|
||||
|
||||
1. **Understand Requirements**
|
||||
- Clarify the app’s needs and requirements.
|
||||
- Determine data access (e.g., from files or databases).
|
||||
- Clarify application objectives.
|
||||
- Determine and implement the necessary utility functions (e.g., for LLMs, web searches, file handling).
|
||||
|
||||
2. **High-Level Flow Design**
|
||||
- Represent the process as a *Nested Directed Graph*.
|
||||
- Identify possible branching for *Node Action*.
|
||||
- Identify data-heavy steps for *Batch*.
|
||||
- Design the flow on how to use the utility functions to achieve the objectives.
|
||||
- Identify possible branching for *Node Action* and data-heavy steps for *Batch*.
|
||||
|
||||
3. **Shared Memory Structure**
|
||||
- For small apps, in-memory data is sufficient.
|
||||
- For larger or persistent needs, use a database.
|
||||
- Define schemas or data structures and plan how states will be stored and updated.
|
||||
- Define data schemas or structures and how states are stored or updated.
|
||||
|
||||
4. **Implementation**
|
||||
- Rely on LLMs for coding tasks.
|
||||
- Start with minimal, straightforward code (e.g., avoid heavy type checking initially).
|
||||
- For each node, specify data access (for `prep` and `post`) and data processing (for `exec`).
|
||||
|
||||
5. **Optimization**
|
||||
- *Prompt Engineering:* Provide clear instructions and examples to reduce ambiguity.
|
||||
|
|
|
|||
Loading…
Reference in New Issue