agent example

This commit is contained in:
zachary62 2025-01-02 18:38:18 +00:00
parent 060c22daf1
commit e6fe74bdda
3 changed files with 221 additions and 2 deletions

92
docs/agent.md Normal file
View File

@ -0,0 +1,92 @@
---
layout: default
title: "Agent"
parent: "Paradigm"
nav_order: 6
---
# Agent
For many tasks, we need agents that take dynamic and recursive actions based on the inputs they receive.
You can create these agents as **Nodes** connected by *Actions* in a directed graph using [Flow](./flow.md).
### Example: Search Agent
This agent:
1. Decides whether to search or answer
2. If searches, loops back to decide if more search needed
3. Answers when enough context gathered
```python
class DecideAction(Node):
def prep(self, shared):
context = shared.get("context", "No previous search")
query = shared["query"]
return query, context
def exec(self, inputs):
query, context = inputs
prompt = f"""
Given input: {query}
Previous search results: {context}
Should I: 1) Search web for more info 2) Answer with current knowledge
Output in yaml:
```yaml
action: search/answer
reason: why this action
search_term: search phrase if action is search
```"""
resp = call_llm(prompt)
yaml_str = resp.split("```yaml")[1].split("```")[0].strip()
result = yaml.safe_load(yaml_str)
assert isinstance(result, dict)
assert "action" in result
assert "reason" in result
assert result["action"] in ["search", "answer"]
if result["action"] == "search":
assert "search_term" in result
return result
def post(self, shared, prep_res, exec_res):
if exec_res["action"] == "search":
shared["search_term"] = exec_res["search_term"]
return exec_res["action"]
class SearchWeb(Node):
def prep(self, shared):
return shared["search_term"]
def exec(self, search_term):
return search_web(search_term)
def post(self, shared, prep_res, exec_res):
prev_searches = shared.get("context", [])
shared["context"] = prev_searches + [
{"term": shared["search_term"], "result": exec_res}
]
return "decide"
class DirectAnswer(Node):
def prep(self, shared):
return shared["query"], shared.get("context", "")
def exec(self, inputs):
query, context = inputs
return call_llm(f"Context: {context}\nAnswer: {query}")
# Connect nodes
decide = DecideAction()
search = SearchWeb()
answer = DirectAnswer()
decide - "search" >> search
decide - "answer" >> answer
search - "decide" >> decide # Loop back
flow = Flow(start=decide)
flow.run({"query": "Who won the Nobel Prize in Physics 2024?"})
```

View File

@ -54,8 +54,8 @@ We model the LLM workflow as a **Nested Directed Graph**:
- [Task Decomposition](./decomp.md) - [Task Decomposition](./decomp.md)
- [Map Reduce](./mapreduce.md) - [Map Reduce](./mapreduce.md)
- [RAG](./rag.md) - [RAG](./rag.md)
- Chat Memory - [Chat Memory](./memory.md)
- Agent - [Agent](./agent.md)
- Multi-Agent - Multi-Agent
- Evaluation - Evaluation

127
docs/memory.md Normal file
View File

@ -0,0 +1,127 @@
---
layout: default
title: "Chat Memory"
parent: "Paradigm"
nav_order: 5
---
# Chat Memory
Multi-turn conversations require memory management to maintain context while avoiding overwhelming the LLM.
### 1. Naive Approach: Full History
Sending the full chat history may overwhelm LLMs.
```python
class ChatNode(Node):
def prep(self, shared):
if "history" not in shared:
shared["history"] = []
user_input = input("You: ")
return shared["history"], user_input
def exec(self, inputs):
history, user_input = inputs
messages = [{"role": "system", "content": "You are a helpful assistant"}]
for h in history:
messages.append(h)
messages.append({"role": "user", "content": user_input})
response = call_llm(messages)
return response
def post(self, shared, prep_res, exec_res):
shared["history"].append({"role": "user", "content": prep_res[1]})
shared["history"].append({"role": "assistant", "content": exec_res})
return "continue"
chat = ChatNode()
chat - "continue" >> chat
flow = Flow(start=chat)
```
### 2. Improved Memory Management
We can:
1. Recursively summarize conversations for overview.
2. Use [vector search](./tool.md) to retrieve relevant past exchanges for details
```python
class HandleInput(Node):
def prep(self, shared):
if "history" not in shared:
shared["history"] = []
shared["summary"] = ""
shared["memory_index"] = None
shared["memories"] = []
user_input = input("You: ")
query_embedding = get_embedding(user_input)
relevant_memories = []
if shared["memory_index"] is not None:
indices, _ = search_index(shared["memory_index"], query_embedding, top_k=2)
relevant_memories = [shared["memories"][i[0]] for i in indices]
shared["current_input"] = {
"summary": shared["summary"],
"relevant": relevant_memories,
"input": user_input
}
class GenerateResponse(Node):
def prep(self, shared):
return shared["current_input"]
def exec(self, context):
prompt = f"""Context:
Summary: {context['summary']}
Relevant past: {context['relevant']}
User: {context['input']}
Response:"""
return call_llm(prompt)
def post(self, shared, prep_res, exec_res):
shared["history"].append({"role": "user", "content": prep_res["input"]})
shared["history"].append({"role": "assistant", "content": exec_res})
class UpdateMemory(Node):
def prep(self, shared):
return shared["current_input"]["input"]
def exec(self, user_input):
return get_embedding(user_input)
def post(self, shared, prep_res, exec_res):
shared["memories"].append(prep_res)
if shared["memory_index"] is None:
shared["memory_index"] = create_index([exec_res])
else:
shared["memory_index"].add(np.array([exec_res]))
class UpdateSummary(Node):
def prep(self, shared):
if shared["history"]:
return shared["history"][-10:]
return None
def exec(self, recent_history):
if recent_history:
return call_llm(f"Summarize this conversation:\n{recent_history}")
return ""
def post(self, shared, prep_res, exec_res):
if exec_res:
shared["summary"] = exec_res
# Connect nodes
input_node = HandleInput()
response_node = GenerateResponse()
memory_node = UpdateMemory()
summary_node = UpdateSummary()
input_node >> response_node >> memory_node >> summary_node >> input_node
chat_flow = Flow(start=input_node)
```