exp docs
This commit is contained in:
parent
df774bb57f
commit
cd03a9b2a2
|
|
@ -1,61 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "(Advanced) Async"
|
||||
parent: "Core Abstraction"
|
||||
nav_order: 5
|
||||
---
|
||||
|
||||
# (Advanced) Async
|
||||
|
||||
**Async** Nodes implement `prep_async()`, `exec_async()`, `exec_fallback_async()`, and/or `post_async()`. This is useful for:
|
||||
|
||||
1. **prep_async()**
|
||||
- For *fetching/reading data (files, APIs, DB)* in an I/O-friendly way.
|
||||
|
||||
2. **exec_async()**
|
||||
- Typically used for async LLM calls.
|
||||
|
||||
3. **post_async()**
|
||||
- For *awaiting user feedback*, *coordinating across multi-agents* or any additional async steps after `exec_async()`.
|
||||
|
||||
|
||||
**Note**: `AsyncNode` must be wrapped in `AsyncFlow`. `AsyncFlow` can also include regular (sync) nodes.
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
class SummarizeThenVerify(AsyncNode):
|
||||
async def prep_async(self, shared):
|
||||
# Example: read a file asynchronously
|
||||
doc_text = await read_file_async(shared["doc_path"])
|
||||
return doc_text
|
||||
|
||||
async def exec_async(self, prep_res):
|
||||
# Example: async LLM call
|
||||
summary = await call_llm_async(f"Summarize: {prep_res}")
|
||||
return summary
|
||||
|
||||
async def post_async(self, shared, prep_res, exec_res):
|
||||
# Example: wait for user feedback
|
||||
decision = await gather_user_feedback(exec_res)
|
||||
if decision == "approve":
|
||||
shared["summary"] = exec_res
|
||||
return "approve"
|
||||
return "deny"
|
||||
|
||||
summarize_node = SummarizeThenVerify()
|
||||
final_node = Finalize()
|
||||
|
||||
# Define transitions
|
||||
summarize_node - "approve" >> final_node
|
||||
summarize_node - "deny" >> summarize_node # retry
|
||||
|
||||
flow = AsyncFlow(start=summarize_node)
|
||||
|
||||
async def main():
|
||||
shared = {"doc_path": "document.txt"}
|
||||
await flow.run_async(shared)
|
||||
print("Final Summary:", shared.get("summary"))
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
107
docs/batch.md
107
docs/batch.md
|
|
@ -1,107 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Batch"
|
||||
parent: "Core Abstraction"
|
||||
nav_order: 4
|
||||
---
|
||||
|
||||
# Batch
|
||||
|
||||
**Batch** makes it easier to handle large inputs in one Node or **rerun** a Flow multiple times. Handy for:
|
||||
- **Chunk-based** processing (e.g., splitting large texts).
|
||||
- **Multi-file** processing.
|
||||
- **Iterating** over lists of params (e.g., user queries, documents, URLs).
|
||||
|
||||
## 1. BatchNode
|
||||
|
||||
A **BatchNode** extends `Node` but changes `prep()` and `exec()`:
|
||||
|
||||
- **`prep(shared)`**: returns an **iterable** (e.g., list, generator).
|
||||
- **`exec(item)`**: called **once** per item in that iterable.
|
||||
- **`post(shared, prep_res, exec_res_list)`**: after all items are processed, receives a **list** of results (`exec_res_list`) and returns an **Action**.
|
||||
|
||||
|
||||
### Example: Summarize a Large File
|
||||
|
||||
```python
|
||||
class MapSummaries(BatchNode):
|
||||
def prep(self, shared):
|
||||
# Suppose we have a big file; chunk it
|
||||
content = shared["data"].get("large_text.txt", "")
|
||||
chunk_size = 10000
|
||||
chunks = [content[i:i+chunk_size] for i in range(0, len(content), chunk_size)]
|
||||
return chunks
|
||||
|
||||
def exec(self, chunk):
|
||||
prompt = f"Summarize this chunk in 10 words: {chunk}"
|
||||
summary = call_llm(prompt)
|
||||
return summary
|
||||
|
||||
def post(self, shared, prep_res, exec_res_list):
|
||||
combined = "\n".join(exec_res_list)
|
||||
shared["summary"]["large_text.txt"] = combined
|
||||
return "default"
|
||||
|
||||
map_summaries = MapSummaries()
|
||||
flow = Flow(start=map_summaries)
|
||||
flow.run(shared)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2. BatchFlow
|
||||
|
||||
A **BatchFlow** runs a **Flow** multiple times, each time with different `params`. Think of it as a loop that replays the Flow for each parameter set.
|
||||
|
||||
|
||||
### Example: Summarize Many Files
|
||||
|
||||
```python
|
||||
class SummarizeAllFiles(BatchFlow):
|
||||
def prep(self, shared):
|
||||
# Return a list of param dicts (one per file)
|
||||
filenames = list(shared["data"].keys()) # e.g., ["file1.txt", "file2.txt", ...]
|
||||
return [{"filename": fn} for fn in filenames]
|
||||
|
||||
# Suppose we have a per-file Flow (e.g., load_file >> summarize >> reduce):
|
||||
summarize_file = SummarizeFile(start=load_file)
|
||||
|
||||
# Wrap that flow into a BatchFlow:
|
||||
summarize_all_files = SummarizeAllFiles(start=summarize_file)
|
||||
summarize_all_files.run(shared)
|
||||
```
|
||||
|
||||
### Under the Hood
|
||||
1. `prep(shared)` returns a list of param dicts—e.g., `[{filename: "file1.txt"}, {filename: "file2.txt"}, ...]`.
|
||||
2. The **BatchFlow** loops through each dict. For each one:
|
||||
- It merges the dict with the BatchFlow’s own `params`.
|
||||
- It calls `flow.run(shared)` using the merged result.
|
||||
3. This means the sub-Flow is run **repeatedly**, once for every param dict.
|
||||
|
||||
---
|
||||
|
||||
## 3. Nested or Multi-Level Batches
|
||||
|
||||
You can nest a **BatchFlow** in another **BatchFlow**. For instance:
|
||||
- **Outer** batch: returns a list of diretory param dicts (e.g., `{"directory": "/pathA"}`, `{"directory": "/pathB"}`, ...).
|
||||
- **Inner** batch: returning a list of per-file param dicts.
|
||||
|
||||
At each level, **BatchFlow** merges its own param dict with the parent’s. By the time you reach the **innermost** node, the final `params` is the merged result of **all** parents in the chain. This way, a nested structure can keep track of the entire context (e.g., directory + file name) at once.
|
||||
|
||||
```python
|
||||
|
||||
class FileBatchFlow(BatchFlow):
|
||||
def prep(self, shared):
|
||||
directory = self.params["directory"]
|
||||
files = [f for f in os.listdir(directory) if f.endswith(".txt")]
|
||||
return [{"filename": f} for f in files]
|
||||
|
||||
class DirectoryBatchFlow(BatchFlow):
|
||||
def prep(self, shared):
|
||||
directories = [ "/path/to/dirA", "/path/to/dirB"]
|
||||
return [{"directory": d} for d in directories]
|
||||
|
||||
|
||||
inner_flow = FileBatchFlow(start=MapSummaries())
|
||||
outer_flow = DirectoryBatchFlow(start=inner_flow)
|
||||
```
|
||||
|
|
@ -1,138 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Communication"
|
||||
parent: "Core Abstraction"
|
||||
nav_order: 3
|
||||
---
|
||||
|
||||
# Communication
|
||||
|
||||
Nodes and Flows **communicate** in two ways:
|
||||
|
||||
1. **Shared Store** – A global data structure (often an in-mem dict) that all nodes can read from and write to. Every Node’s `prep()` and `post()` methods receive the **same** `shared` store.
|
||||
2. **Params** – Each node and Flow has a `params` dict assigned by the **parent Flow**. Params mostly serve as identifiers, letting each node/flow know what task it’s assigned.
|
||||
|
||||
If you know memory management, **Shared Store** is like a **heap** shared across function calls, while **Params** is like a **stack** assigned by parent function calls.
|
||||
|
||||
|
||||
|
||||
> **Why not use other communication models like Message Passing?** *Message passing* works well for simple DAGs, but with *nested graphs* (Flows containing Flows, repeated or cyclic calls), routing messages becomes hard to maintain. A shared store keeps the design simple and easy.
|
||||
{: .note }
|
||||
|
||||
---
|
||||
|
||||
## 1. Shared Store
|
||||
|
||||
### Overview
|
||||
|
||||
A shared store is typically an in-mem dictionary, like:
|
||||
```python
|
||||
shared = {"data": {}, "summary": {}, "config": {...}, ...}
|
||||
```
|
||||
|
||||
It can also contain local file handlers, DB connections, or a combination for persistence. We recommend deciding the data structure or DB schema first based on your app requirements.
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
class LoadData(Node):
|
||||
def prep(self, shared):
|
||||
# Suppose we read from disk or an API
|
||||
shared["data"]["my_file.txt"] = "Some text content"
|
||||
return None
|
||||
|
||||
class Summarize(Node):
|
||||
def prep(self, shared):
|
||||
# We can read what LoadData wrote
|
||||
content = shared["data"].get("my_file.txt", "")
|
||||
return content
|
||||
|
||||
def exec(self, prep_res):
|
||||
prompt = f"Summarize: {prep_res}"
|
||||
summary = call_llm(prompt)
|
||||
return summary
|
||||
|
||||
def post(self, shared, prep_res, exec_res):
|
||||
shared["summary"]["my_file.txt"] = exec_res
|
||||
return "default"
|
||||
|
||||
load_data = LoadData()
|
||||
summarize = Summarize()
|
||||
load_data >> summarize
|
||||
flow = Flow(start=load_data)
|
||||
|
||||
shared = {}
|
||||
flow.run(shared)
|
||||
```
|
||||
|
||||
Here:
|
||||
- `LoadData` writes to `shared["data"]`.
|
||||
- `Summarize` reads from the same location.
|
||||
No special data-passing—just the same `shared` object.
|
||||
|
||||
---
|
||||
|
||||
## 2. Params
|
||||
|
||||
**Params** let you store *per-Node* or *per-Flow* config that doesn't need to live in the shared store. They are:
|
||||
- **Immutable** during a Node’s run cycle (i.e., they don’t change mid-`prep`, `exec`, `post`).
|
||||
- **Set** via `set_params()`.
|
||||
- **Cleared** and updated each time a parent Flow calls it.
|
||||
|
||||
|
||||
> Only set the uppermost Flow params because others will be overwritten by the parent Flow. If you need to set child node params, see [Batch](./batch.md).
|
||||
{: .warning }
|
||||
|
||||
Typically, **Params** are identifiers (e.g., file name, page number). Use them to fetch the task you assigned or write to a specific part of the shared store.
|
||||
|
||||
### Example
|
||||
|
||||
```python
|
||||
# 1) Create a Node that uses params
|
||||
class SummarizeFile(Node):
|
||||
def prep(self, shared):
|
||||
# Access the node's param
|
||||
filename = self.params["filename"]
|
||||
return shared["data"].get(filename, "")
|
||||
|
||||
def exec(self, prep_res):
|
||||
prompt = f"Summarize: {prep_res}"
|
||||
return call_llm(prompt)
|
||||
|
||||
def post(self, shared, prep_res, exec_res):
|
||||
filename = self.params["filename"]
|
||||
shared["summary"][filename] = exec_res
|
||||
return "default"
|
||||
|
||||
# 2) Set params
|
||||
node = SummarizeFile()
|
||||
|
||||
# 3) Set Node params directly (for testing)
|
||||
node.set_params({"filename": "doc1.txt"})
|
||||
node.run(shared)
|
||||
|
||||
# 4) Create Flow
|
||||
flow = Flow(start=node)
|
||||
|
||||
# 5) Set Flow params (overwrites node params)
|
||||
flow.set_params({"filename": "doc2.txt"})
|
||||
flow.run(shared) # The node summarizes doc2, not doc1
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 3. Shared Store vs. Params
|
||||
|
||||
Think of the **Shared Store** like a heap and **Params** like a stack.
|
||||
|
||||
- **Shared Store**:
|
||||
- Public, global.
|
||||
- You can design and populate ahead, e.g., for the input to process.
|
||||
- Great for data results, large content, or anything multiple nodes need.
|
||||
- Keep it tidy—structure it carefully (like a mini schema).
|
||||
|
||||
- **Params**:
|
||||
- Local, ephemeral.
|
||||
- Passed in by parent Flows. You should only set it for the uppermost flow.
|
||||
- Perfect for small values like filenames or numeric IDs.
|
||||
- Do **not** persist across different nodes and are reset.
|
||||
|
|
@ -1,6 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Core Abstraction"
|
||||
nav_order: 2
|
||||
has_children: true
|
||||
---
|
||||
171
docs/flow.md
171
docs/flow.md
|
|
@ -1,171 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Flow"
|
||||
parent: "Core Abstraction"
|
||||
nav_order: 2
|
||||
---
|
||||
|
||||
# Flow
|
||||
|
||||
A **Flow** orchestrates how Nodes connect and run, based on **Actions** returned from each Node’s `post()` method. You can chain Nodes in a sequence or create branching logic depending on the **Action** string.
|
||||
|
||||
## 1. Action-based Transitions
|
||||
|
||||
Each Node's `post(shared, prep_res, exec_res)` method returns an **Action** string. By default, if `post()` doesn't explicitly return anything, we treat that as `"default"`.
|
||||
|
||||
You define transitions with the syntax:
|
||||
|
||||
1. Basic default transition: `node_a >> node_b`
|
||||
This means if `node_a.post()` returns `"default"` (or `None`), go to `node_b`.
|
||||
(Equivalent to `node_a - "default" >> node_b`)
|
||||
|
||||
2. Named action transition: `node_a - "action_name" >> node_b`
|
||||
This means if `node_a.post()` returns `"action_name"`, go to `node_b`.
|
||||
|
||||
It’s possible to create loops, branching, or multi-step flows.
|
||||
|
||||
## 2. Creating a Flow
|
||||
|
||||
A **Flow** begins with a **start** node (or flow). You call `Flow(start=some_node)` to specify the entry point. When you call `flow.run(shared)`, it executes the first node, looks at its `post()` return Action, follows the corresponding transition, and continues until there’s no next node or you explicitly stop.
|
||||
|
||||
### Example: Simple Sequence
|
||||
|
||||
Here’s a minimal flow of two nodes in a chain:
|
||||
|
||||
```python
|
||||
node_a >> node_b
|
||||
flow = Flow(start=node_a)
|
||||
flow.run(shared)
|
||||
```
|
||||
|
||||
- When you run the flow, it executes `node_a`.
|
||||
- Suppose `node_a.post()` returns `"default"`.
|
||||
- The flow then sees `"default"` Action is linked to `node_b` and runs `node_b`.
|
||||
- If `node_b.post()` returns `"default"` but we didn’t define `node_b >> something_else`, the flow ends there.
|
||||
|
||||
### Example: Branching & Looping
|
||||
|
||||
Here's a simple expense approval flow that demonstrates branching and looping. The `ReviewExpense` node can return three possible Actions:
|
||||
|
||||
- `"approved"`: expense is approved, move to payment processing
|
||||
- `"needs_revision"`: expense needs changes, send back for revision
|
||||
- `"rejected"`: expense is denied, finish the process
|
||||
|
||||
We can wire them like this:
|
||||
|
||||
```python
|
||||
# Define the flow connections
|
||||
review - "approved" >> payment # If approved, process payment
|
||||
review - "needs_revision" >> revise # If needs changes, go to revision
|
||||
review - "rejected" >> finish # If rejected, finish the process
|
||||
|
||||
revise >> review # After revision, go back for another review
|
||||
payment >> finish # After payment, finish the process
|
||||
|
||||
flow = Flow(start=review)
|
||||
```
|
||||
|
||||
Let's see how it flows:
|
||||
|
||||
1. If `review.post()` returns `"approved"`, the expense moves to `payment` node
|
||||
2. If `review.post()` returns `"needs_revision"`, it goes to `revise` node, which then loops back to `review`
|
||||
3. If `review.post()` returns `"rejected"`, it moves to `finish` node and stops
|
||||
|
||||
```mermaid
|
||||
flowchart TD
|
||||
review[Review Expense] -->|approved| payment[Process Payment]
|
||||
review -->|needs_revision| revise[Revise Report]
|
||||
review -->|rejected| finish[Finish Process]
|
||||
|
||||
revise --> review
|
||||
payment --> finish
|
||||
```
|
||||
|
||||
### Running Individual Nodes vs. Running a Flow
|
||||
|
||||
- `node.run(shared)`: Just runs that node alone (calls `prep()`, `exec()`, `post()`), returns an Action.
|
||||
- `flow.run(shared)`: Executes from the start node, follows Actions to the next node, and so on until the flow can’t continue (no next node or no next Action).
|
||||
|
||||
|
||||
> node.run(shared) **does not** proceed automatically to the successor and may use incorrect parameters.
|
||||
> This is mainly for debugging or testing a single node.
|
||||
> Always use `flow.run(...)` in production to ensure the full pipeline runs correctly.
|
||||
{: .warning }
|
||||
|
||||
## 3. Nested Flows
|
||||
|
||||
A **Flow** can act like a Node, which enables powerful composition patterns. This means you can:
|
||||
|
||||
1. Use a Flow as a Node within another Flow's transitions.
|
||||
2. Combine multiple smaller Flows into a larger Flow for reuse.
|
||||
3. Node `params` will be a merging of **all** parents' `params`.
|
||||
|
||||
### Basic Flow Nesting
|
||||
|
||||
Here's how to connect a flow to another node:
|
||||
|
||||
```python
|
||||
# Create a sub-flow
|
||||
node_a >> node_b
|
||||
subflow = Flow(start=node_a)
|
||||
|
||||
# Connect it to another node
|
||||
subflow >> node_c
|
||||
|
||||
# Create the parent flow
|
||||
parent_flow = Flow(start=subflow)
|
||||
```
|
||||
|
||||
When `parent_flow.run()` executes:
|
||||
1. It starts `subflow`
|
||||
2. `subflow` runs through its nodes (`node_a` then `node_b`)
|
||||
3. After `subflow` completes, execution continues to `node_c`
|
||||
|
||||
### Example: Order Processing Pipeline
|
||||
|
||||
Here's a practical example that breaks down order processing into nested flows:
|
||||
|
||||
```python
|
||||
# Payment processing sub-flow
|
||||
validate_payment >> process_payment >> payment_confirmation
|
||||
payment_flow = Flow(start=validate_payment)
|
||||
|
||||
# Inventory sub-flow
|
||||
check_stock >> reserve_items >> update_inventory
|
||||
inventory_flow = Flow(start=check_stock)
|
||||
|
||||
# Shipping sub-flow
|
||||
create_label >> assign_carrier >> schedule_pickup
|
||||
shipping_flow = Flow(start=create_label)
|
||||
|
||||
# Connect the flows into a main order pipeline
|
||||
payment_flow >> inventory_flow >> shipping_flow
|
||||
|
||||
# Create the master flow
|
||||
order_pipeline = Flow(start=payment_flow)
|
||||
|
||||
# Run the entire pipeline
|
||||
order_pipeline.run(shared_data)
|
||||
```
|
||||
|
||||
This creates a clean separation of concerns while maintaining a clear execution path:
|
||||
|
||||
```mermaid
|
||||
flowchart LR
|
||||
subgraph order_pipeline[Order Pipeline]
|
||||
subgraph paymentFlow["Payment Flow"]
|
||||
A[Validate Payment] --> B[Process Payment] --> C[Payment Confirmation]
|
||||
end
|
||||
|
||||
subgraph inventoryFlow["Inventory Flow"]
|
||||
D[Check Stock] --> E[Reserve Items] --> F[Update Inventory]
|
||||
end
|
||||
|
||||
subgraph shippingFlow["Shipping Flow"]
|
||||
G[Create Label] --> H[Assign Carrier] --> I[Schedule Pickup]
|
||||
end
|
||||
|
||||
paymentFlow --> inventoryFlow
|
||||
inventoryFlow --> shippingFlow
|
||||
end
|
||||
```
|
||||
69
docs/llm.md
69
docs/llm.md
|
|
@ -1,69 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "LLM Wrapper"
|
||||
parent: "Preparation"
|
||||
nav_order: 1
|
||||
---
|
||||
|
||||
# LLM Wrappers
|
||||
|
||||
We **don't** provide built-in LLM wrappers. Instead, please implement your own, for example by asking an assistant like ChatGPT or Claude. If you ask ChatGPT to "implement a `call_llm` function that takes a prompt and returns the LLM response," you shall get something like:
|
||||
|
||||
```python
|
||||
def call_llm(prompt):
|
||||
from openai import OpenAI
|
||||
# Set the OpenAI API key (use environment variables, etc.)
|
||||
client = OpenAI(api_key="YOUR_API_KEY_HERE")
|
||||
r = client.chat.completions.create(
|
||||
model="gpt-4",
|
||||
messages=[{"role": "user", "content": prompt}]
|
||||
)
|
||||
return r.choices[0].message.content
|
||||
|
||||
# Example usage
|
||||
call_llm("How are you?")
|
||||
```
|
||||
|
||||
## Improvements
|
||||
Feel free to enhance your `call_llm` function as needed. Here are examples:
|
||||
|
||||
- Handle chat history:
|
||||
|
||||
```python
|
||||
def call_llm(messages):
|
||||
from openai import OpenAI
|
||||
client = OpenAI(api_key="YOUR_API_KEY_HERE")
|
||||
r = client.chat.completions.create(
|
||||
model="gpt-4",
|
||||
messages=messages
|
||||
)
|
||||
return r.choices[0].message.content
|
||||
```
|
||||
|
||||
- Add in-memory caching:
|
||||
|
||||
```python
|
||||
from functools import lru_cache
|
||||
|
||||
@lru_cache(maxsize=1000)
|
||||
def call_llm(prompt):
|
||||
# Your implementation here
|
||||
pass
|
||||
```
|
||||
|
||||
- Enable logging:
|
||||
|
||||
```python
|
||||
def call_llm(prompt):
|
||||
import logging
|
||||
logging.info(f"Prompt: {prompt}")
|
||||
response = ... # Your implementation here
|
||||
logging.info(f"Response: {response}")
|
||||
return response
|
||||
```
|
||||
|
||||
## Why Not Provide Built-in LLM Wrappers?
|
||||
I believe it is a **bad practice** to provide LLM-specific implementations in a general framework:
|
||||
- **LLM APIs change frequently**. Hardcoding them makes maintenance a nighmare.
|
||||
- You may need **flexibility** to switch vendors, use fine-tuned models, or deploy local LLMs.
|
||||
- You may need **optimizations** like prompt caching, request batching, or response streaming.
|
||||
95
docs/node.md
95
docs/node.md
|
|
@ -1,95 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Node"
|
||||
parent: "Core Abstraction"
|
||||
nav_order: 1
|
||||
---
|
||||
|
||||
# Node
|
||||
|
||||
A **Node** is the smallest building block of Mini LLM Flow. Each Node has 3 steps:
|
||||
|
||||
1. **`prep(shared)`**
|
||||
- Reads and preprocesses data from the `shared` store for LLMs.
|
||||
- Examples: *query DB, read files, or serialize data into a string*.
|
||||
- Returns `prep_res`, which will be passed to both `exec()` and `post()`.
|
||||
|
||||
2. **`exec(prep_res)`**
|
||||
- The main execution step where the LLM is called.
|
||||
- Optionally has built-in retry and error handling (below).
|
||||
- ⚠️ If retry enabled, ensure implementation is idempotent.
|
||||
- Returns `exec_res`, which is passed to `post()`.
|
||||
|
||||
3. **`post(shared, prep_res, exec_res)`**
|
||||
- Writes results back to the `shared` store or decides the next action.
|
||||
- Examples: *finalize outputs, trigger next steps, or log results*.
|
||||
- Returns a **string** to specify the next action (`"default"` if nothing or `None` is returned).
|
||||
|
||||
|
||||
> All 3 steps are optional. For example, you might only need to run the Prep without calling the LLM.
|
||||
{: .note }
|
||||
|
||||
|
||||
## Fault Tolerance & Retries
|
||||
|
||||
Nodes in Mini LLM Flow can **retry** execution if `exec()` raises an exception. You control this via two parameters when you create the Node:
|
||||
|
||||
- `max_retries` (int): How many times to try running `exec()`. The default is `1`, which means **no** retry.
|
||||
- `wait` (int): The time to wait (in **seconds**) before each retry attempt. By default, `wait=0` (i.e., no waiting). Increasing this is helpful when you encounter rate-limits or quota errors from your LLM provider and need to back off.
|
||||
|
||||
```python
|
||||
my_node = SummarizeFile(max_retries=3, wait=10)
|
||||
```
|
||||
|
||||
When an exception occurs in `exec()`, the Node automatically retries until:
|
||||
|
||||
- It either succeeds, or
|
||||
- The Node has retried `max_retries - 1` times already and fails on the last attempt.
|
||||
|
||||
### Graceful Fallback
|
||||
|
||||
If you want to **gracefully handle** the error rather than raising it, you can override:
|
||||
|
||||
```python
|
||||
def exec_fallback(self, shared, prep_res, exc):
|
||||
raise exc
|
||||
```
|
||||
|
||||
By default, it just re-raises `exc`. But you can return a fallback result instead.
|
||||
That fallback result becomes the `exec_res` passed to `post()`.
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
class SummarizeFile(Node):
|
||||
def prep(self, shared):
|
||||
filename = self.params["filename"]
|
||||
return shared["data"][filename]
|
||||
|
||||
def exec(self, prep_res):
|
||||
if not prep_res:
|
||||
raise ValueError("Empty file content!")
|
||||
prompt = f"Summarize this text in 10 words: {prep_res}"
|
||||
summary = call_llm(prompt) # might fail
|
||||
return summary
|
||||
|
||||
def exec_fallback(self, shared, prep_res, exc):
|
||||
# Provide a simple fallback instead of crashing
|
||||
return "There was an error processing your request."
|
||||
|
||||
def post(self, shared, prep_res, exec_res):
|
||||
filename = self.params["filename"]
|
||||
shared["summary"][filename] = exec_res
|
||||
# Return "default" by not returning anything
|
||||
|
||||
summarize_node = SummarizeFile(max_retries=3)
|
||||
|
||||
# Run the node standalone for testing (calls prep->exec->post).
|
||||
# If exec() fails, it retries up to 3 times before calling exec_fallback().
|
||||
summarize_node.set_params({"filename": "test_file.txt"})
|
||||
action_result = summarize_node.run(shared)
|
||||
|
||||
print("Action returned:", action_result) # Usually "default"
|
||||
print("Summary stored:", shared["summary"].get("test_file.txt"))
|
||||
```
|
||||
|
||||
|
|
@ -1,6 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Paradigm"
|
||||
nav_order: 4
|
||||
has_children: true
|
||||
---
|
||||
|
|
@ -1,54 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "(Advanced) Parallel"
|
||||
parent: "Core Abstraction"
|
||||
nav_order: 6
|
||||
---
|
||||
|
||||
# (Advanced) Parallel
|
||||
|
||||
**Parallel** Nodes and Flows let you run multiple **Async** Nodes and Flows **concurrently**—for example, summarizing multiple texts at once. This can improve performance by overlapping I/O and compute.
|
||||
|
||||
## AsyncParallelBatchNode
|
||||
|
||||
Like **AsyncBatchNode**, but run `exec_async()` in **parallel**:
|
||||
|
||||
```python
|
||||
class ParallelSummaries(AsyncParallelBatchNode):
|
||||
async def prep_async(self, shared):
|
||||
# e.g., multiple texts
|
||||
return shared["texts"]
|
||||
|
||||
async def exec_async(self, text):
|
||||
prompt = f"Summarize: {text}"
|
||||
return await call_llm_async(prompt)
|
||||
|
||||
async def post_async(self, shared, prep_res, exec_res_list):
|
||||
shared["summary"] = "\n\n".join(exec_res_list)
|
||||
return "default"
|
||||
|
||||
node = ParallelSummaries()
|
||||
flow = AsyncFlow(start=node)
|
||||
```
|
||||
|
||||
## AsyncParallelBatchFlow
|
||||
|
||||
Parallel version of **BatchFlow**. Each iteration of the sub-flow runs **concurrently** using different parameters:
|
||||
|
||||
```python
|
||||
class SummarizeMultipleFiles(AsyncParallelBatchFlow):
|
||||
async def prep_async(self, shared):
|
||||
return [{"filename": f} for f in shared["files"]]
|
||||
|
||||
sub_flow = AsyncFlow(start=LoadAndSummarizeFile())
|
||||
parallel_flow = SummarizeMultipleFiles(start=sub_flow)
|
||||
await parallel_flow.run_async(shared)
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
- **Ensure Tasks Are Independent**: If each item depends on the output of a previous item, **do not** parallelize.
|
||||
|
||||
- **Beware of Rate Limits**: Parallel calls can **quickly** trigger rate limits on LLM services. You may need a **throttling** mechanism (e.g., semaphores or sleep intervals).
|
||||
|
||||
- **Consider Single-Node Batch APIs**: Some LLMs offer a **batch inference** API where you can send multiple prompts in a single call. This is more complex to implement but can be more efficient than launching many parallel requests and mitigates rate limits.
|
||||
|
|
@ -1,6 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Preparation"
|
||||
nav_order: 3
|
||||
has_children: true
|
||||
---
|
||||
|
|
@ -1,111 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Structured Output"
|
||||
parent: "Paradigm"
|
||||
nav_order: 1
|
||||
---
|
||||
|
||||
# Structured Output
|
||||
|
||||
In many use cases, you may want the LLM to output a specific structure, such as a list or a dictionary with predefined keys.
|
||||
|
||||
There are several approaches to achieve a structured output:
|
||||
- **Prompting** the LLM to strictly return a defined structure.
|
||||
- Using LLMs that natively support **schema enforcement**.
|
||||
- **Post-processing** the LLM’s response to extract structured content.
|
||||
|
||||
In practice, **Prompting** is simple and reliable for modern LLMs.
|
||||
|
||||
### Example Use Cases
|
||||
|
||||
- Extracting Key Information
|
||||
|
||||
```yaml
|
||||
product:
|
||||
name: Widget Pro
|
||||
price: 199.99
|
||||
description: |
|
||||
A high-quality widget designed for professionals.
|
||||
Recommended for advanced users.
|
||||
```
|
||||
|
||||
- Summarizing Documents into Bullet Points
|
||||
|
||||
```yaml
|
||||
summary:
|
||||
- This product is easy to use.
|
||||
- It is cost-effective.
|
||||
- Suitable for all skill levels.
|
||||
```
|
||||
|
||||
- Generating Configuration Files
|
||||
|
||||
```yaml
|
||||
server:
|
||||
host: 127.0.0.1
|
||||
port: 8080
|
||||
ssl: true
|
||||
```
|
||||
|
||||
## Prompt Engineering
|
||||
|
||||
When prompting the LLM to produce **structured** output:
|
||||
1. **Wrap** the structure in code fences (e.g., ` ```yaml`).
|
||||
2. **Validate** that all required fields exist (and let `Node` handles retry).
|
||||
|
||||
### Example Text Summarization
|
||||
|
||||
```python
|
||||
class SummarizeNode(Node):
|
||||
def exec(self, prep_res):
|
||||
# Suppose `prep_res` is the text to summarize.
|
||||
prompt = f"""
|
||||
Please summarize the following text as YAML, with exactly 3 bullet points
|
||||
|
||||
{prep_res}
|
||||
|
||||
Now, output:
|
||||
```yaml
|
||||
summary:
|
||||
- bullet 1
|
||||
- bullet 2
|
||||
- bullet 3
|
||||
```"""
|
||||
response = call_llm(prompt)
|
||||
yaml_str = response.split("```yaml")[1].split("```")[0].strip()
|
||||
|
||||
import yaml
|
||||
structured_result = yaml.safe_load(yaml_str)
|
||||
|
||||
assert "summary" in structured_result
|
||||
assert isinstance(structured_result["summary"], list)
|
||||
|
||||
return structured_result
|
||||
```
|
||||
|
||||
### Why YAML instead of JSON?
|
||||
|
||||
Current LLMs struggle with escaping. YAML is easier with strings since they don’t always need quotes.
|
||||
|
||||
**In JSON**
|
||||
|
||||
```json
|
||||
{
|
||||
"dialogue": "Alice said: \"Hello Bob.\\nHow are you?\\nI am good.\""
|
||||
}
|
||||
```
|
||||
|
||||
- Every double quote inside the string must be escaped with `\"`.
|
||||
- Each newline in the dialogue must be represented as `\n`.
|
||||
|
||||
**In YAML**
|
||||
|
||||
```yaml
|
||||
dialogue: |
|
||||
Alice said: "Hello Bob.
|
||||
How are you?
|
||||
I am good."
|
||||
```
|
||||
|
||||
- No need to escape interior quotes—just place the entire text under a block literal (`|`).
|
||||
- Newlines are naturally preserved without needing `\n`.
|
||||
165
docs/tool.md
165
docs/tool.md
|
|
@ -1,165 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Tool"
|
||||
parent: "Preparation"
|
||||
nav_order: 2
|
||||
---
|
||||
|
||||
# Tool
|
||||
|
||||
Similar to LLM wrappers, we **don't** provide built-in tools. Here, we recommend some *minimal* (and incomplete) implementations of commonly used tools. These examples can serve as a starting point for your own tooling.
|
||||
|
||||
---
|
||||
|
||||
|
||||
## 1. Embedding Calls
|
||||
|
||||
```python
|
||||
def get_embedding(text):
|
||||
import openai
|
||||
# Set your API key elsewhere, e.g., environment variables
|
||||
r = openai.Embedding.create(
|
||||
model="text-embedding-ada-002",
|
||||
input=text
|
||||
)
|
||||
return r["data"][0]["embedding"]
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2. Vector Database (Faiss)
|
||||
|
||||
```python
|
||||
import faiss
|
||||
import numpy as np
|
||||
|
||||
def create_index(embeddings):
|
||||
dim = len(embeddings[0])
|
||||
index = faiss.IndexFlatL2(dim)
|
||||
index.add(np.array(embeddings).astype('float32'))
|
||||
return index
|
||||
|
||||
def search_index(index, query_embedding, top_k=5):
|
||||
D, I = index.search(
|
||||
np.array([query_embedding]).astype('float32'),
|
||||
top_k
|
||||
)
|
||||
return I, D
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 3. Local Database
|
||||
|
||||
```python
|
||||
import sqlite3
|
||||
|
||||
def execute_sql(query):
|
||||
conn = sqlite3.connect("mydb.db")
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(query)
|
||||
result = cursor.fetchall()
|
||||
conn.commit()
|
||||
conn.close()
|
||||
return result
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 4. Python Function Execution
|
||||
|
||||
```python
|
||||
def run_code(code_str):
|
||||
env = {}
|
||||
exec(code_str, env)
|
||||
return env
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 5. PDF Extraction
|
||||
|
||||
```python
|
||||
def extract_text_from_pdf(file_path):
|
||||
import PyPDF2
|
||||
pdfFileObj = open(file_path, "rb")
|
||||
reader = PyPDF2.PdfReader(pdfFileObj)
|
||||
text = ""
|
||||
for page in reader.pages:
|
||||
text += page.extract_text()
|
||||
pdfFileObj.close()
|
||||
return text
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 6. Web Crawling
|
||||
|
||||
```python
|
||||
def crawl_web(url):
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
html = requests.get(url).text
|
||||
soup = BeautifulSoup(html, "html.parser")
|
||||
return soup.title.string, soup.get_text()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 7. Basic Search (SerpAPI example)
|
||||
|
||||
```python
|
||||
def search_google(query):
|
||||
import requests
|
||||
params = {
|
||||
"engine": "google",
|
||||
"q": query,
|
||||
"api_key": "YOUR_API_KEY"
|
||||
}
|
||||
r = requests.get("https://serpapi.com/search", params=params)
|
||||
return r.json()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
|
||||
## 8. Audio Transcription (OpenAI Whisper)
|
||||
|
||||
```python
|
||||
def transcribe_audio(file_path):
|
||||
import openai
|
||||
audio_file = open(file_path, "rb")
|
||||
transcript = openai.Audio.transcribe("whisper-1", audio_file)
|
||||
return transcript["text"]
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 9. Text-to-Speech (TTS)
|
||||
|
||||
```python
|
||||
def text_to_speech(text):
|
||||
import pyttsx3
|
||||
engine = pyttsx3.init()
|
||||
engine.say(text)
|
||||
engine.runAndWait()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 10. Sending Email
|
||||
|
||||
```python
|
||||
def send_email(to_address, subject, body, from_address, password):
|
||||
import smtplib
|
||||
from email.mime.text import MIMEText
|
||||
|
||||
msg = MIMEText(body)
|
||||
msg["Subject"] = subject
|
||||
msg["From"] = from_address
|
||||
msg["To"] = to_address
|
||||
|
||||
with smtplib.SMTP_SSL("smtp.gmail.com", 465) as server:
|
||||
server.login(from_address, password)
|
||||
server.sendmail(from_address, [to_address], msg.as_string())
|
||||
```
|
||||
Loading…
Reference in New Issue