update .cursorrules
This commit is contained in:
parent
4a9dd5bca0
commit
a2447f0bb6
|
|
@ -1,155 +1,24 @@
|
|||
|
||||
|
||||
================================================
|
||||
File: docs/guide.md
|
||||
================================================
|
||||
---
|
||||
layout: default
|
||||
title: "Design Guidance"
|
||||
parent: "Apps"
|
||||
nav_order: 1
|
||||
---
|
||||
|
||||
# LLM System Design Guidance
|
||||
|
||||
|
||||
## Example LLM Project File Structure
|
||||
|
||||
```
|
||||
my_project/
|
||||
├── main.py
|
||||
├── flow.py
|
||||
├── utils/
|
||||
│ ├── __init__.py
|
||||
│ ├── call_llm.py
|
||||
│ └── search_web.py
|
||||
├── tests/
|
||||
│ ├── __init__.py
|
||||
│ ├── test_flow.py
|
||||
│ └── test_nodes.py
|
||||
├── requirements.txt
|
||||
└── docs/
|
||||
└── design.md
|
||||
```
|
||||
|
||||
|
||||
### `docs/`
|
||||
|
||||
Store the documentation of the project.
|
||||
|
||||
It should include a `design.md` file, which describes
|
||||
- Project requirements
|
||||
- Required utility functions
|
||||
- High-level flow with a mermaid diagram
|
||||
- Shared memory data structure
|
||||
- For each node, discuss
|
||||
- Node purpose and design (e.g., should it be a batch or async node?)
|
||||
- How the data shall be read (for `prep`) and written (for `post`)
|
||||
- How the data shall be processed (for `exec`)
|
||||
|
||||
### `utils/`
|
||||
|
||||
Houses functions for external API calls (e.g., LLMs, web searches, etc.).
|
||||
|
||||
It’s recommended to dedicate one Python file per API call, with names like `call_llm.py` or `search_web.py`. Each file should include:
|
||||
|
||||
- The function to call the API
|
||||
- A main function to run that API call
|
||||
|
||||
For instance, here’s a simplified `call_llm.py` example:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
def call_llm(prompt):
|
||||
client = OpenAI(api_key="YOUR_API_KEY_HERE")
|
||||
response = client.chat.completions.create(
|
||||
model="gpt-4o",
|
||||
messages=[{"role": "user", "content": prompt}]
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
def main():
|
||||
prompt = "Hello, how are you?"
|
||||
print(call_llm(prompt))
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
### `main.py`
|
||||
|
||||
Serves as the project’s entry point.
|
||||
|
||||
### `flow.py`
|
||||
|
||||
Implements the application’s flow, starting with node followed by the flow structure.
|
||||
|
||||
|
||||
### `tests/`
|
||||
|
||||
Optionally contains all tests. Use `pytest` for testing flows, nodes, and utility functions.
|
||||
For example, `test_call_llm.py` might look like:
|
||||
|
||||
```python
|
||||
from utils.call_llm import call_llm
|
||||
|
||||
def test_call_llm():
|
||||
prompt = "Hello, how are you?"
|
||||
assert call_llm(prompt) is not None
|
||||
```
|
||||
|
||||
## System Design Steps
|
||||
|
||||
1. **Project Requirements**
|
||||
- Identify the project's core entities.
|
||||
- Define each functional requirement and map out how these entities interact step by step.
|
||||
|
||||
2. **Utility Functions**
|
||||
- Determine the low-level utility functions you’ll need (e.g., for LLM calls, web searches, file handling).
|
||||
- Implement these functions and write basic tests to confirm they work correctly.
|
||||
|
||||
3. **Flow Design**
|
||||
- Develop a high-level process flow that meets the project’s requirements.
|
||||
- Specify which utility functions are used at each step.
|
||||
- Identify possible decision points for *Node Actions* and data-intensive operations for *Batch* tasks.
|
||||
- Illustrate the flow with a Mermaid diagram.
|
||||
|
||||
4. **Data Structure**
|
||||
- Decide how to store and update state, whether in memory (for smaller applications) or a database (for larger or persistent needs).
|
||||
- Define data schemas or models that detail how information is stored, accessed, and updated.
|
||||
|
||||
5. **Implementation**
|
||||
- Start coding with a simple, direct approach (avoid over-engineering at first).
|
||||
- For each node in your flow:
|
||||
- **prep**: Determine how data is accessed or retrieved.
|
||||
- **exec**: Outline the actual processing or logic needed.
|
||||
- **post**: Handle any final updates or data persistence tasks.
|
||||
|
||||
6. **Optimization**
|
||||
- **Prompt Engineering**: Use clear and specific instructions with illustrative examples to reduce ambiguity.
|
||||
- **Task Decomposition**: Break large, complex tasks into manageable, logical steps.
|
||||
|
||||
7. **Reliability**
|
||||
- **Structured Output**: Verify outputs conform to the required format. Consider increasing `max_retries` if needed.
|
||||
- **Test Cases**: Develop clear, reproducible tests for each part of the flow.
|
||||
- **Self-Evaluation**: Introduce an additional Node (powered by LLMs) to review outputs when the results are uncertain.
|
||||
|
||||
================================================
|
||||
File: docs/agent.md
|
||||
================================================
|
||||
---
|
||||
layout: default
|
||||
title: "Agent"
|
||||
parent: "Paradigm"
|
||||
parent: "Design"
|
||||
nav_order: 6
|
||||
---
|
||||
|
||||
# Agent
|
||||
|
||||
For many tasks, we need agents that take dynamic and recursive actions based on the inputs they receive.
|
||||
You can create these agents as **Nodes** connected by *Actions* in a directed graph using [Flow](./flow.md).
|
||||
Agent is a powerful design pattern, where node can take dynamic actions based on the context it receives.
|
||||
To express an agent, create a Node (the agent) with [branching](./flow.md) to other nodes (Actions).
|
||||
|
||||
> The core of build **performant** and **reliable** agents boils down to:
|
||||
>
|
||||
> 1. **Context Management:** Provide *clear, relevant context* so agents can understand the problem.E.g., Rather than dumping an entire chat history or entire files, use a [Workflow](./decomp.md) that filters out and includes only the most relevant information.
|
||||
>
|
||||
> 2. **Action Space:** Define *a well-structured, unambiguous, and easy-to-use* set of actions. For instance, avoid creating overlapping actions like `read_databases` and `read_csvs`. Instead, unify data sources (e.g., move CSVs into a database) and design a single action. The action can be parameterized (e.g., string for search) or programmable (e.g., SQL queries).
|
||||
{: .best-practice }
|
||||
|
||||
### Example: Search Agent
|
||||
|
||||
|
|
@ -234,8 +103,6 @@ flow = Flow(start=decide)
|
|||
flow.run({"query": "Who won the Nobel Prize in Physics 2024?"})
|
||||
```
|
||||
|
||||
|
||||
|
||||
================================================
|
||||
File: docs/async.md
|
||||
================================================
|
||||
|
|
@ -436,10 +303,8 @@ Nodes and Flows **communicate** in two ways:
|
|||
|
||||
If you know memory management, think of the **Shared Store** like a **heap** (shared by all function calls), and **Params** like a **stack** (assigned by the caller).
|
||||
|
||||
> **Best Practice:** Use `Shared Store` for almost all cases. It's flexible and easy to manage. It separates data storage from data processing, making the code more readable and easier to maintain.
|
||||
>
|
||||
> `Params` is more a syntax sugar for [Batch](./batch.md).
|
||||
{: .note }
|
||||
> Use `Shared Store` for almost all cases. It's flexible and easy to manage. It separates *Data Schema* from *Compute Logic*, making the code easier to maintain. `Params` is more a syntax sugar for [Batch](./batch.md).
|
||||
{: .best-practice }
|
||||
|
||||
---
|
||||
|
||||
|
|
@ -551,14 +416,21 @@ File: docs/decomp.md
|
|||
================================================
|
||||
---
|
||||
layout: default
|
||||
title: "Task Decomposition"
|
||||
parent: "Paradigm"
|
||||
title: "Workflow"
|
||||
parent: "Design"
|
||||
nav_order: 2
|
||||
---
|
||||
|
||||
# Task Decomposition
|
||||
# Workflow
|
||||
|
||||
Many real-world tasks are too complex for one LLM call. The solution is to decompose them into multiple calls as a [Flow](./flow.md) of Nodes.
|
||||
Many real-world tasks are too complex for one LLM call. The solution is to decompose them into a [chain](./flow.md) of multiple Nodes.
|
||||
|
||||
|
||||
> - You don't want to make each task **too coarse**, because it may be *too complex for one LLM call*.
|
||||
> - You don't want to make each task **too granular**, because then *the LLM call doesn't have enough context* and results are *not consistent across nodes*.
|
||||
>
|
||||
> You usually need multiple *iterations* to find the *sweet spot*. If the task has too many *edge cases*, consider using [Agents](./agent.md).
|
||||
{: .best-practice }
|
||||
|
||||
### Example: Article Writing
|
||||
|
||||
|
|
@ -932,6 +804,123 @@ flowchart LR
|
|||
|
||||
|
||||
|
||||
================================================
|
||||
File: docs/guide.md
|
||||
================================================
|
||||
---
|
||||
layout: default
|
||||
title: "Design Guidance"
|
||||
parent: "Apps"
|
||||
nav_order: 1
|
||||
---
|
||||
|
||||
# LLM System Design Guidance
|
||||
|
||||
|
||||
## System Design Steps
|
||||
|
||||
1. **Project Requirements**
|
||||
- Identify the project's core entities, and provide a step-by-step user story.
|
||||
- Define a list of both functional and non-functional requirements.
|
||||
|
||||
2. **Utility Functions**
|
||||
- Determine the utility functions on which this project depends (e.g., for LLM calls, web searches, file handling).
|
||||
- Implement these functions and write basic tests to confirm they work correctly.
|
||||
|
||||
> After this step, don't jump straight into building an LLM system.
|
||||
>
|
||||
> First, make sure you clearly understand the problem by manually solving it using some example inputs.
|
||||
>
|
||||
> It's always easier to first build a solid intuition about the problem and its solution, then focus on automating the process.
|
||||
{: .warning }
|
||||
|
||||
3. **Flow Design**
|
||||
- Build a high-level design of the flow of nodes (for example, using a Mermaid diagram) to automate the solution.
|
||||
- For each node in your flow, specify:
|
||||
- **prep**: How data is accessed or retrieved.
|
||||
- **exec**: The specific utility function to use (ideally one function per node).
|
||||
- **post**: How data is updated or persisted.
|
||||
- Identify potential design patterns, such as Batch, Agent, or RAG.
|
||||
|
||||
4. **Data Structure**
|
||||
- Decide how you will store and update state (in memory for smaller applications or in a database for larger, persistent needs).
|
||||
- If it isn’t straightforward, define data schemas or models detailing how information is stored, accessed, and updated.
|
||||
- As you finalize your data structure, you may need to refine your flow design.
|
||||
|
||||
5. **Implementation**
|
||||
- For each node, implement the **prep**, **exec**, and **post** functions based on the flow design.
|
||||
- Start coding with a simple, direct approach (avoid over-engineering at first).
|
||||
- Add logging throughout the code to facilitate debugging.
|
||||
|
||||
6. **Optimization**
|
||||
- **Prompt Engineering**: Use clear, specific instructions with illustrative examples to reduce ambiguity.
|
||||
- **Task Decomposition**: Break large or complex tasks into manageable, logical steps.
|
||||
|
||||
7. **Reliability**
|
||||
- **Structured Output**: Ensure outputs conform to the required format. Consider increasing `max_retries` if needed.
|
||||
- **Test Cases**: Develop clear, reproducible tests for each part of the flow.
|
||||
- **Self-Evaluation**: Introduce an additional node (powered by LLMs) to review outputs when results are uncertain.
|
||||
|
||||
## Example LLM Project File Structure
|
||||
|
||||
```
|
||||
my_project/
|
||||
├── main.py
|
||||
├── flow.py
|
||||
├── utils/
|
||||
│ ├── __init__.py
|
||||
│ ├── call_llm.py
|
||||
│ └── search_web.py
|
||||
├── requirements.txt
|
||||
└── docs/
|
||||
└── design.md
|
||||
```
|
||||
|
||||
### `docs/`
|
||||
|
||||
Holds all project documentation. Include a `design.md` file covering:
|
||||
- Project requirements
|
||||
- Utility functions
|
||||
- High-level flow (with a Mermaid diagram)
|
||||
- Shared memory data structure
|
||||
- Node designs:
|
||||
- Purpose and design (e.g., batch or async)
|
||||
- Data read (prep) and write (post)
|
||||
- Data processing (exec)
|
||||
|
||||
### `utils/`
|
||||
|
||||
Houses functions for external API calls (e.g., LLMs, web searches, etc.). It’s recommended to dedicate one Python file per API call, with names like `call_llm.py` or `search_web.py`. Each file should include:
|
||||
|
||||
- The function to call the API
|
||||
- A main function to run that API call for testing
|
||||
|
||||
For instance, here’s a simplified `call_llm.py` example:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
def call_llm(prompt):
|
||||
client = OpenAI(api_key="YOUR_API_KEY_HERE")
|
||||
response = client.chat.completions.create(
|
||||
model="gpt-4o",
|
||||
messages=[{"role": "user", "content": prompt}]
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
if __name__ == "__main__":
|
||||
prompt = "Hello, how are you?"
|
||||
print(call_llm(prompt))
|
||||
```
|
||||
|
||||
### `main.py`
|
||||
|
||||
Serves as the project’s entry point.
|
||||
|
||||
### `flow.py`
|
||||
|
||||
Implements the application’s flow, starting with node followed by the flow structure.
|
||||
|
||||
================================================
|
||||
File: docs/index.md
|
||||
================================================
|
||||
|
|
@ -956,7 +945,7 @@ We model the LLM workflow as a **Nested Directed Graph**:
|
|||
|
||||
|
||||
<div align="center">
|
||||
<img src="https://github.com/the-pocket/PocketFlow/raw/main/assets/minillmflow.jpg?raw=true" width="400"/>
|
||||
<img src="https://github.com/the-pocket/PocketFlow/raw/main/assets/meme.jpg?raw=true" width="400"/>
|
||||
</div>
|
||||
|
||||
|
||||
|
|
@ -974,23 +963,21 @@ We model the LLM workflow as a **Nested Directed Graph**:
|
|||
- [(Advanced) Async](./async.md)
|
||||
- [(Advanced) Parallel](./parallel.md)
|
||||
|
||||
## Low-Level Details
|
||||
## Utility Functions
|
||||
|
||||
- [LLM Wrapper](./llm.md)
|
||||
- [Tool](./tool.md)
|
||||
- [Viz and Debug](./viz.md)
|
||||
- Chunking
|
||||
|
||||
> We do not provide built-in implementations.
|
||||
>
|
||||
> Example implementations are provided as reference.
|
||||
> We do not provide built-in utility functions. Example implementations are provided as reference.
|
||||
{: .warning }
|
||||
|
||||
|
||||
## High-Level Paradigm
|
||||
## Design Patterns
|
||||
|
||||
- [Structured Output](./structure.md)
|
||||
- [Task Decomposition](./decomp.md)
|
||||
- [Workflow](./decomp.md)
|
||||
- [Map Reduce](./mapreduce.md)
|
||||
- [RAG](./rag.md)
|
||||
- [Chat Memory](./memory.md)
|
||||
|
|
@ -1012,7 +999,7 @@ File: docs/llm.md
|
|||
---
|
||||
layout: default
|
||||
title: "LLM Wrapper"
|
||||
parent: "Details"
|
||||
parent: "Utility"
|
||||
nav_order: 1
|
||||
---
|
||||
|
||||
|
|
@ -1113,13 +1100,19 @@ File: docs/mapreduce.md
|
|||
---
|
||||
layout: default
|
||||
title: "Map Reduce"
|
||||
parent: "Paradigm"
|
||||
parent: "Design"
|
||||
nav_order: 3
|
||||
---
|
||||
|
||||
# Map Reduce
|
||||
|
||||
Process large inputs by splitting them into chunks using [BatchNode](./batch.md), then combining results.
|
||||
MapReduce is a design pattern suitable when you have either:
|
||||
- Large input data (e.g., multiple files to process), or
|
||||
- Large output data (e.g., multiple forms to fill)
|
||||
|
||||
and there is a logical way to break the task into smaller, ideally independent parts.
|
||||
You first break down the task using [BatchNode](./batch.md) in the map phase, followed by aggregation in the reduce phase.
|
||||
|
||||
|
||||
### Example: Document Summarization
|
||||
|
||||
|
|
@ -1151,7 +1144,7 @@ File: docs/memory.md
|
|||
---
|
||||
layout: default
|
||||
title: "Chat Memory"
|
||||
parent: "Paradigm"
|
||||
parent: "Design"
|
||||
nav_order: 5
|
||||
---
|
||||
|
||||
|
|
@ -1197,59 +1190,81 @@ We can:
|
|||
2. Use [vector search](./tool.md) to retrieve relevant exchanges beyond the last 4.
|
||||
|
||||
```python
|
||||
class ChatWithMemory(Node):
|
||||
################################
|
||||
# Node A: Retrieve user input & relevant messages
|
||||
################################
|
||||
class ChatRetrieve(Node):
|
||||
def prep(self, s):
|
||||
# Initialize shared dict
|
||||
s.setdefault("history", [])
|
||||
s.setdefault("memory_index", None)
|
||||
|
||||
user_input = input("You: ")
|
||||
return user_input
|
||||
|
||||
# Retrieve relevant past if we have enough history and an index
|
||||
def exec(self, user_input):
|
||||
emb = get_embedding(user_input)
|
||||
relevant = []
|
||||
if len(s["history"]) > 8 and s["memory_index"]:
|
||||
idx, _ = search_index(s["memory_index"], get_embedding(user_input), top_k=2)
|
||||
relevant = [s["history"][i[0]] for i in idx]
|
||||
if len(shared["history"]) > 8 and shared["memory_index"]:
|
||||
idx, _ = search_index(shared["memory_index"], emb, top_k=2)
|
||||
relevant = [shared["history"][i[0]] for i in idx]
|
||||
return (user_input, relevant)
|
||||
|
||||
return {"user_input": user_input, "recent": s["history"][-8:], "relevant": relevant}
|
||||
def post(self, s, p, r):
|
||||
user_input, relevant = r
|
||||
s["user_input"] = user_input
|
||||
s["relevant"] = relevant
|
||||
return "continue"
|
||||
|
||||
def exec(self, c):
|
||||
messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
||||
# Include relevant history if any
|
||||
if c["relevant"]:
|
||||
messages.append({"role": "system", "content": f"Relevant: {c['relevant']}"})
|
||||
# Add recent history and the current user input
|
||||
messages += c["recent"] + [{"role": "user", "content": c["user_input"]}]
|
||||
return call_llm(messages)
|
||||
################################
|
||||
# Node B: Call LLM, update history + index
|
||||
################################
|
||||
class ChatReply(Node):
|
||||
def prep(self, s):
|
||||
user_input = s["user_input"]
|
||||
recent = s["history"][-8:]
|
||||
relevant = s.get("relevant", [])
|
||||
return user_input, recent, relevant
|
||||
|
||||
def exec(self, inputs):
|
||||
user_input, recent, relevant = inputs
|
||||
msgs = [{"role":"system","content":"You are a helpful assistant."}]
|
||||
if relevant:
|
||||
msgs.append({"role":"system","content":f"Relevant: {relevant}"})
|
||||
msgs.extend(recent)
|
||||
msgs.append({"role":"user","content":user_input})
|
||||
ans = call_llm(msgs)
|
||||
return ans
|
||||
|
||||
def post(self, s, pre, ans):
|
||||
# Update chat history
|
||||
s["history"] += [
|
||||
{"role": "user", "content": pre["user_input"]},
|
||||
{"role": "assistant", "content": ans}
|
||||
]
|
||||
user_input, _, _ = pre
|
||||
s["history"].append({"role":"user","content":user_input})
|
||||
s["history"].append({"role":"assistant","content":ans})
|
||||
|
||||
# When first reaching 8 messages, create index
|
||||
# Manage memory index
|
||||
if len(s["history"]) == 8:
|
||||
embeddings = []
|
||||
embs = []
|
||||
for i in range(0, 8, 2):
|
||||
e = s["history"][i]["content"] + " " + s["history"][i+1]["content"]
|
||||
embeddings.append(get_embedding(e))
|
||||
s["memory_index"] = create_index(embeddings)
|
||||
|
||||
# Embed older exchanges once we exceed 8 messages
|
||||
text = s["history"][i]["content"] + " " + s["history"][i+1]["content"]
|
||||
embs.append(get_embedding(text))
|
||||
s["memory_index"] = create_index(embs)
|
||||
elif len(s["history"]) > 8:
|
||||
pair = s["history"][-10:-8]
|
||||
embedding = get_embedding(pair[0]["content"] + " " + pair[1]["content"])
|
||||
s["memory_index"].add(np.array([embedding]).astype('float32'))
|
||||
text = s["history"][-2]["content"] + " " + s["history"][-1]["content"]
|
||||
new_emb = np.array([get_embedding(text)]).astype('float32')
|
||||
s["memory_index"].add(new_emb)
|
||||
|
||||
print(f"Assistant: {ans}")
|
||||
return "continue"
|
||||
|
||||
chat = ChatWithMemory()
|
||||
chat - "continue" >> chat
|
||||
flow = Flow(start=chat)
|
||||
flow.run({})
|
||||
################################
|
||||
# Flow wiring
|
||||
################################
|
||||
retrieve = ChatRetrieve()
|
||||
reply = ChatReply()
|
||||
retrieve - "continue" >> reply
|
||||
reply - "continue" >> retrieve
|
||||
|
||||
flow = Flow(start=retrieve)
|
||||
shared = {}
|
||||
flow.run(shared)
|
||||
```
|
||||
|
||||
|
||||
|
|
@ -1259,7 +1274,7 @@ File: docs/multi_agent.md
|
|||
---
|
||||
layout: default
|
||||
title: "(Advanced) Multi-Agents"
|
||||
parent: "Paradigm"
|
||||
parent: "Design"
|
||||
nav_order: 7
|
||||
---
|
||||
|
||||
|
|
@ -1268,6 +1283,8 @@ nav_order: 7
|
|||
Multiple [Agents](./flow.md) can work together by handling subtasks and communicating the progress.
|
||||
Communication between agents is typically implemented using message queues in shared storage.
|
||||
|
||||
> Most of time, you don't need Multi-Agents. Start with a simple solution first.
|
||||
{: .best-practice }
|
||||
|
||||
### Example Agent Communication: Message Queue
|
||||
|
||||
|
|
@ -1548,18 +1565,6 @@ print("Action returned:", action_result) # "default"
|
|||
print("Summary stored:", shared["summary"])
|
||||
```
|
||||
|
||||
|
||||
|
||||
================================================
|
||||
File: docs/paradigm.md
|
||||
================================================
|
||||
---
|
||||
layout: default
|
||||
title: "Paradigm"
|
||||
nav_order: 4
|
||||
has_children: true
|
||||
---
|
||||
|
||||
================================================
|
||||
File: docs/parallel.md
|
||||
================================================
|
||||
|
|
@ -1577,6 +1582,14 @@ nav_order: 6
|
|||
> Because of Python’s GIL, parallel nodes and flows can’t truly parallelize CPU-bound tasks (e.g., heavy numerical computations). However, they excel at overlapping I/O-bound work—like LLM calls, database queries, API requests, or file I/O.
|
||||
{: .warning }
|
||||
|
||||
> - **Ensure Tasks Are Independent**: If each item depends on the output of a previous item, **do not** parallelize.
|
||||
>
|
||||
> - **Beware of Rate Limits**: Parallel calls can **quickly** trigger rate limits on LLM services. You may need a **throttling** mechanism (e.g., semaphores or sleep intervals).
|
||||
>
|
||||
> - **Consider Single-Node Batch APIs**: Some LLMs offer a **batch inference** API where you can send multiple prompts in a single call. This is more complex to implement but can be more efficient than launching many parallel requests and mitigates rate limits.
|
||||
{: .best-practice }
|
||||
|
||||
|
||||
## AsyncParallelBatchNode
|
||||
|
||||
Like **AsyncBatchNode**, but run `exec_async()` in **parallel**:
|
||||
|
|
@ -1613,33 +1626,13 @@ parallel_flow = SummarizeMultipleFiles(start=sub_flow)
|
|||
await parallel_flow.run_async(shared)
|
||||
```
|
||||
|
||||
|
||||
## Best Practices
|
||||
|
||||
- **Ensure Tasks Are Independent**: If each item depends on the output of a previous item, **do not** parallelize.
|
||||
|
||||
- **Beware of Rate Limits**: Parallel calls can **quickly** trigger rate limits on LLM services. You may need a **throttling** mechanism (e.g., semaphores or sleep intervals).
|
||||
|
||||
- **Consider Single-Node Batch APIs**: Some LLMs offer a **batch inference** API where you can send multiple prompts in a single call. This is more complex to implement but can be more efficient than launching many parallel requests and mitigates rate limits.
|
||||
|
||||
|
||||
================================================
|
||||
File: docs/preparation.md
|
||||
================================================
|
||||
---
|
||||
layout: default
|
||||
title: "Details"
|
||||
nav_order: 3
|
||||
has_children: true
|
||||
---
|
||||
|
||||
================================================
|
||||
File: docs/rag.md
|
||||
================================================
|
||||
---
|
||||
layout: default
|
||||
title: "RAG"
|
||||
parent: "Paradigm"
|
||||
parent: "Design"
|
||||
nav_order: 4
|
||||
---
|
||||
|
||||
|
|
@ -1653,34 +1646,44 @@ Use [vector search](./tool.md) to find relevant context for LLM responses.
|
|||
```python
|
||||
class PrepareEmbeddings(Node):
|
||||
def prep(self, shared):
|
||||
texts = shared["texts"]
|
||||
embeddings = [get_embedding(text) for text in texts]
|
||||
shared["search_index"] = create_index(embeddings)
|
||||
return shared["texts"]
|
||||
|
||||
def exec(self, texts):
|
||||
# Embed each text chunk
|
||||
embs = [get_embedding(t) for t in texts]
|
||||
return embs
|
||||
|
||||
def post(self, shared, prep_res, exec_res):
|
||||
shared["search_index"] = create_index(exec_res)
|
||||
# no action string means "default"
|
||||
|
||||
class AnswerQuestion(Node):
|
||||
def prep(self, shared):
|
||||
question = input("Enter question: ")
|
||||
query_embedding = get_embedding(question)
|
||||
indices, _ = search_index(shared["search_index"], query_embedding, top_k=1)
|
||||
relevant_text = shared["texts"][indices[0][0]]
|
||||
return question, relevant_text
|
||||
return question
|
||||
|
||||
def exec(self, inputs):
|
||||
question, context = inputs
|
||||
prompt = f"Question: {question}\nContext: {context}\nAnswer: "
|
||||
def exec(self, question):
|
||||
q_emb = get_embedding(question)
|
||||
idx, _ = search_index(shared["search_index"], q_emb, top_k=1)
|
||||
best_id = idx[0][0]
|
||||
relevant_text = shared["texts"][best_id]
|
||||
prompt = f"Question: {question}\nContext: {relevant_text}\nAnswer:"
|
||||
return call_llm(prompt)
|
||||
|
||||
def post(self, shared, prep_res, exec_res):
|
||||
print(f"Answer: {exec_res}")
|
||||
def post(self, shared, p, answer):
|
||||
print("Answer:", answer)
|
||||
|
||||
# Connect nodes
|
||||
############################################
|
||||
# Wire up the flow
|
||||
prep = PrepareEmbeddings()
|
||||
qa = AnswerQuestion()
|
||||
prep >> qa
|
||||
|
||||
# Create flow
|
||||
qa_flow = Flow(start=prep)
|
||||
qa_flow.run(shared)
|
||||
flow = Flow(start=prep)
|
||||
|
||||
# Example usage
|
||||
shared = {"texts": ["I love apples", "Cats are great", "The sky is blue"]}
|
||||
flow.run(shared)
|
||||
```
|
||||
|
||||
================================================
|
||||
|
|
@ -1689,7 +1692,7 @@ File: docs/structure.md
|
|||
---
|
||||
layout: default
|
||||
title: "Structured Output"
|
||||
parent: "Paradigm"
|
||||
parent: "Design"
|
||||
nav_order: 1
|
||||
---
|
||||
|
||||
|
|
@ -1771,6 +1774,9 @@ summary:
|
|||
return structured_result
|
||||
```
|
||||
|
||||
> Besides using `assert` statements, another popular way to validate schemas is [Pydantic](https://github.com/pydantic/pydantic)
|
||||
{: .note }
|
||||
|
||||
### Why YAML instead of JSON?
|
||||
|
||||
Current LLMs struggle with escaping. YAML is easier with strings since they don't always need quotes.
|
||||
|
|
@ -1804,7 +1810,7 @@ File: docs/tool.md
|
|||
---
|
||||
layout: default
|
||||
title: "Tool"
|
||||
parent: "Details"
|
||||
parent: "Utility"
|
||||
nav_order: 2
|
||||
---
|
||||
|
||||
|
|
@ -1814,7 +1820,6 @@ Similar to LLM wrappers, we **don't** provide built-in tools. Here, we recommend
|
|||
|
||||
---
|
||||
|
||||
|
||||
## 1. Embedding Calls
|
||||
|
||||
```python
|
||||
|
|
@ -2025,7 +2030,7 @@ File: docs/viz.md
|
|||
---
|
||||
layout: default
|
||||
title: "Viz and Debug"
|
||||
parent: "Details"
|
||||
parent: "Utility"
|
||||
nav_order: 3
|
||||
---
|
||||
|
||||
|
|
@ -2162,4 +2167,3 @@ data_science_flow.run({})
|
|||
```
|
||||
|
||||
The output would be: `Call stack: ['EvaluateModelNode', 'ModelFlow', 'DataScienceFlow']`
|
||||
|
||||
|
|
@ -36,7 +36,7 @@ For a new development paradigmn: **Build LLM Apps by Chatting with LLM agents, N
|
|||
|
||||
- **For quick questions**: Use the [GPT assistant](https://chatgpt.com/g/g-677464af36588191b9eba4901946557b-pocket-flow-assistant) (note: it uses older models not ideal for coding).
|
||||
- **For one-time LLM task**: Create a [ChatGPT](https://help.openai.com/en/articles/10169521-using-projects-in-chatgpt) or [Claude](https://www.anthropic.com/news/projects) project; upload the [docs](docs) to project knowledge.
|
||||
- **For LLM App development**: Use [Cursor AI](https://www.cursor.com/). Copy [.cursorrules](assets/.cursorrules) to your project root as **[Cursor Rules](https://docs.cursor.com/context/rules-for-ai)**.
|
||||
- **For LLM App development**: Use [Cursor AI](https://www.cursor.com/). Copy [.cursorrules](.cursorrules) to your project root as **[Cursor Rules](https://docs.cursor.com/context/rules-for-ai)**.
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue