increase robustness

This commit is contained in:
zachary62 2024-12-25 01:33:59 +00:00
parent 7f107f60e6
commit 89c003f657
1 changed files with 129 additions and 21 deletions

View File

@ -1,8 +1,11 @@
import asyncio
# ---------------------------------------------------------------------
# Base Classes
# ---------------------------------------------------------------------
class BaseNode:
def __init__(self):
self.set_parameters({}) # immutable during processing; could be overwritten as node can be reused
self.set_parameters({})
self.successors = {}
def set_parameters(self, parameters):
@ -16,10 +19,25 @@ class BaseNode:
return None
async def process_one(self, shared_storage, item):
"""
The main single-item processing method that end developers override.
Default does nothing.
"""
return None
async def robust_process_one(self, shared_storage, item):
"""
In BaseNode, this is just a pass-through to `process_one`.
Subclasses (like Node with retry) can override this to add extra logic.
"""
return await self.process_one(shared_storage, item)
async def process(self, shared_storage, preprocess_result):
return await self.process_one(shared_storage, preprocess_result)
"""
Calls `robust_process_one` instead of `process_one` so that
any subclass overrides of robust_process_one will apply.
"""
return await self.robust_process_one(shared_storage, preprocess_result)
async def postprocess(self, shared_storage, preprocess_result, process_result):
return "default"
@ -57,6 +75,7 @@ class BaseNode:
def __call__(self, condition):
return _ConditionalTransition(self, condition)
class _ConditionalTransition:
def __init__(self, source_node, condition):
self.source_node = source_node
@ -67,51 +86,140 @@ class _ConditionalTransition:
raise TypeError("Target must be a BaseNode")
return self.source_node.add_successor(target_node, self.condition)
class BaseSuperNode(BaseNode):
# ---------------------------------------------------------------------
# Flow: allows you to define a "start_node" that is run in a sub-flow
# ---------------------------------------------------------------------
class Flow(BaseNode):
def __init__(self, start_node=None):
super().__init__()
self.start_node = start_node
async def process_one(self, shared_storage, item):
# Instead of doing a single operation, we run a sub-flow
if self.start_node:
current_node = self.start_node
while current_node:
# Pass down the parameters
current_node.set_parameters(self.parameters)
current_node = await current_node.run_one(shared_storage or {})
# ---------------------------------------------------------------------
# Node: adds robust retry logic on top of BaseNode
# ---------------------------------------------------------------------
class Node(BaseNode):
"""
Retries its single-item operation up to `max_retries` times,
waiting `delay_s` seconds between attempts.
By default: max_retries=5, delay_s=0.1
End developers simply override `process_one` to define logic.
"""
def __init__(self, max_retries=5, delay_s=0.1):
super().__init__()
self.parameters.setdefault("max_retries", max_retries)
self.parameters.setdefault("delay_s", delay_s)
async def fail_one(self, shared_storage, item, exc):
"""
Called if the final retry also fails. By default,
just returns a special string or could log an error.
End developers can override this to do something else
(e.g., store the failure in a separate list or
trigger alternative logic).
"""
# Example: log and return a special status
print(f"[FAIL_ONE] item={item}, error={exc}")
return "fail"
async def robust_process_one(self, shared_storage, item):
max_retries = self.parameters.get("max_retries", 5)
delay_s = self.parameters.get("delay_s", 0.1)
for attempt in range(max_retries):
try:
# Defer to the user's process_one logic
return await super().robust_process_one(shared_storage, item)
except Exception as e:
if attempt == max_retries - 1:
# Final attempt failed; call fail_one
return await self.fail_one(shared_storage, item, e)
# Otherwise, wait a bit and try again
await asyncio.sleep(delay_s)
# ---------------------------------------------------------------------
# BatchMixin: processes a collection of items by calling robust_process_one for each
# ---------------------------------------------------------------------
class BatchMixin:
async def process(self, shared_storage, items):
"""
Processes a *collection* of items in a loop, calling robust_process_one per item.
"""
partial_results = []
for item in items:
r = await self.process_one(shared_storage, item)
r = await self.robust_process_one(shared_storage, item)
partial_results.append(r)
return self.merge(shared_storage, partial_results)
def merge(self, shared_storage, partial_results):
"""
Combines partial results into a single output.
By default, returns the list of partial results.
"""
return partial_results
async def preprocess(self, shared_storage):
"""
Typically, you'd return a list or collection of items to process here.
By default, returns an empty list.
"""
return []
class BatchBaseNode(BatchMixin, BaseNode):
# ---------------------------------------------------------------------
# BatchNode: combines Node (robust logic) + BatchMixin (batch logic)
# ---------------------------------------------------------------------
class BatchNode(BatchMixin, Node):
"""
A batch-processing node that:
- Inherits robust retry logic from Node
- Uses BatchMixin to process a list of items
"""
async def preprocess(self, shared_storage):
# Gather or return the batch items. By default, no items.
return []
async def process_one(self, shared_storage, item):
"""
The per-item logic that the end developer will override.
By default, does nothing.
"""
return None
class BatchSuperNode(BatchMixin, BaseSuperNode):
# ---------------------------------------------------------------------
# BatchFlow: combines Flow (sub-flow logic) + batch processing + robust logic
# ---------------------------------------------------------------------
class BatchFlow(BatchMixin, Flow):
"""
This class runs a sub-flow (start_node) for each item in a batch.
If you also want robust retries, you can adapt or combine with `Node`.
"""
async def preprocess(self, shared_storage):
# Return your batch items here
return []
async def process_one(self, shared_storage, param_dict):
node_parameters = self.parameters.copy()
node_parameters.update(param_dict)
if self.start_node:
current_node = self.start_node
while current_node:
current_node.set_parameters(node_parameters)
current_node = await current_node.run_one(shared_storage or {})
async def process(self, shared_storage, items):
"""
For each item, run the sub-flow (start_node).
"""
results = []
for item in items:
# Here we re-run the sub-flow, which happens inside process_one of Flow
await self.process_one(shared_storage, item)
# Optionally collect results or do something after the sub-flow
results.append(f"Finished sub-flow for item: {item}")
return results