update doc
This commit is contained in:
parent
3dc17d3741
commit
4a9dd5bca0
|
|
@ -52,7 +52,6 @@ nav_order: 1
|
||||||
- **Test Cases**: Develop clear, reproducible tests for each part of the flow.
|
- **Test Cases**: Develop clear, reproducible tests for each part of the flow.
|
||||||
- **Self-Evaluation**: Introduce an additional node (powered by LLMs) to review outputs when results are uncertain.
|
- **Self-Evaluation**: Introduce an additional node (powered by LLMs) to review outputs when results are uncertain.
|
||||||
|
|
||||||
|
|
||||||
## Example LLM Project File Structure
|
## Example LLM Project File Structure
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
@ -63,38 +62,29 @@ my_project/
|
||||||
│ ├── __init__.py
|
│ ├── __init__.py
|
||||||
│ ├── call_llm.py
|
│ ├── call_llm.py
|
||||||
│ └── search_web.py
|
│ └── search_web.py
|
||||||
├── tests/
|
|
||||||
│ ├── __init__.py
|
|
||||||
│ ├── test_flow.py
|
|
||||||
│ └── test_nodes.py
|
|
||||||
├── requirements.txt
|
├── requirements.txt
|
||||||
└── docs/
|
└── docs/
|
||||||
└── design.md
|
└── design.md
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
### `docs/`
|
### `docs/`
|
||||||
|
|
||||||
Store the documentation of the project.
|
Holds all project documentation. Include a `design.md` file covering:
|
||||||
|
|
||||||
It should include a `design.md` file, which describes
|
|
||||||
- Project requirements
|
- Project requirements
|
||||||
- Required utility functions
|
- Utility functions
|
||||||
- High-level flow with a mermaid diagram
|
- High-level flow (with a Mermaid diagram)
|
||||||
- Shared memory data structure
|
- Shared memory data structure
|
||||||
- For each node, discuss
|
- Node designs:
|
||||||
- Node purpose and design (e.g., should it be a batch or async node?)
|
- Purpose and design (e.g., batch or async)
|
||||||
- How the data shall be read (for `prep`) and written (for `post`)
|
- Data read (prep) and write (post)
|
||||||
- How the data shall be processed (for `exec`)
|
- Data processing (exec)
|
||||||
|
|
||||||
### `utils/`
|
### `utils/`
|
||||||
|
|
||||||
Houses functions for external API calls (e.g., LLMs, web searches, etc.).
|
Houses functions for external API calls (e.g., LLMs, web searches, etc.). It’s recommended to dedicate one Python file per API call, with names like `call_llm.py` or `search_web.py`. Each file should include:
|
||||||
|
|
||||||
It’s recommended to dedicate one Python file per API call, with names like `call_llm.py` or `search_web.py`. Each file should include:
|
|
||||||
|
|
||||||
- The function to call the API
|
- The function to call the API
|
||||||
- A main function to run that API call
|
- A main function to run that API call for testing
|
||||||
|
|
||||||
For instance, here’s a simplified `call_llm.py` example:
|
For instance, here’s a simplified `call_llm.py` example:
|
||||||
|
|
||||||
|
|
@ -109,12 +99,9 @@ def call_llm(prompt):
|
||||||
)
|
)
|
||||||
return response.choices[0].message.content
|
return response.choices[0].message.content
|
||||||
|
|
||||||
def main():
|
if __name__ == "__main__":
|
||||||
prompt = "Hello, how are you?"
|
prompt = "Hello, how are you?"
|
||||||
print(call_llm(prompt))
|
print(call_llm(prompt))
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### `main.py`
|
### `main.py`
|
||||||
|
|
@ -123,18 +110,4 @@ Serves as the project’s entry point.
|
||||||
|
|
||||||
### `flow.py`
|
### `flow.py`
|
||||||
|
|
||||||
Implements the application’s flow, starting with node followed by the flow structure.
|
Implements the application’s flow, starting with node followed by the flow structure.
|
||||||
|
|
||||||
|
|
||||||
### `tests/`
|
|
||||||
|
|
||||||
Optionally contains all tests. Use `pytest` for testing flows, nodes, and utility functions.
|
|
||||||
For example, `test_call_llm.py` might look like:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from utils.call_llm import call_llm
|
|
||||||
|
|
||||||
def test_call_llm():
|
|
||||||
prompt = "Hello, how are you?"
|
|
||||||
assert call_llm(prompt) is not None
|
|
||||||
```
|
|
||||||
|
|
@ -7,7 +7,13 @@ nav_order: 3
|
||||||
|
|
||||||
# Map Reduce
|
# Map Reduce
|
||||||
|
|
||||||
Process large inputs by splitting them into chunks using [BatchNode](./batch.md), then combining results.
|
MapReduce is a design pattern suitable when you have either:
|
||||||
|
- Large input data (e.g., multiple files to process), or
|
||||||
|
- Large output data (e.g., multiple forms to fill)
|
||||||
|
|
||||||
|
and there is a logical way to break the task into smaller, ideally independent parts.
|
||||||
|
You first break down the task using [BatchNode](./batch.md) in the map phase, followed by aggregation in the reduce phase.
|
||||||
|
|
||||||
|
|
||||||
### Example: Document Summarization
|
### Example: Document Summarization
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -47,57 +47,79 @@ We can:
|
||||||
2. Use [vector search](./tool.md) to retrieve relevant exchanges beyond the last 4.
|
2. Use [vector search](./tool.md) to retrieve relevant exchanges beyond the last 4.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
class ChatWithMemory(Node):
|
################################
|
||||||
|
# Node A: Retrieve user input & relevant messages
|
||||||
|
################################
|
||||||
|
class ChatRetrieve(Node):
|
||||||
def prep(self, s):
|
def prep(self, s):
|
||||||
# Initialize shared dict
|
|
||||||
s.setdefault("history", [])
|
s.setdefault("history", [])
|
||||||
s.setdefault("memory_index", None)
|
s.setdefault("memory_index", None)
|
||||||
|
|
||||||
user_input = input("You: ")
|
user_input = input("You: ")
|
||||||
|
return user_input
|
||||||
# Retrieve relevant past if we have enough history and an index
|
|
||||||
|
def exec(self, user_input):
|
||||||
|
emb = get_embedding(user_input)
|
||||||
relevant = []
|
relevant = []
|
||||||
if len(s["history"]) > 8 and s["memory_index"]:
|
if len(shared["history"]) > 8 and shared["memory_index"]:
|
||||||
idx, _ = search_index(s["memory_index"], get_embedding(user_input), top_k=2)
|
idx, _ = search_index(shared["memory_index"], emb, top_k=2)
|
||||||
relevant = [s["history"][i[0]] for i in idx]
|
relevant = [shared["history"][i[0]] for i in idx]
|
||||||
|
return (user_input, relevant)
|
||||||
|
|
||||||
return {"user_input": user_input, "recent": s["history"][-8:], "relevant": relevant}
|
def post(self, s, p, r):
|
||||||
|
user_input, relevant = r
|
||||||
|
s["user_input"] = user_input
|
||||||
|
s["relevant"] = relevant
|
||||||
|
return "continue"
|
||||||
|
|
||||||
def exec(self, c):
|
################################
|
||||||
messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
# Node B: Call LLM, update history + index
|
||||||
# Include relevant history if any
|
################################
|
||||||
if c["relevant"]:
|
class ChatReply(Node):
|
||||||
messages.append({"role": "system", "content": f"Relevant: {c['relevant']}"})
|
def prep(self, s):
|
||||||
# Add recent history and the current user input
|
user_input = s["user_input"]
|
||||||
messages += c["recent"] + [{"role": "user", "content": c["user_input"]}]
|
recent = s["history"][-8:]
|
||||||
return call_llm(messages)
|
relevant = s.get("relevant", [])
|
||||||
|
return user_input, recent, relevant
|
||||||
|
|
||||||
|
def exec(self, inputs):
|
||||||
|
user_input, recent, relevant = inputs
|
||||||
|
msgs = [{"role":"system","content":"You are a helpful assistant."}]
|
||||||
|
if relevant:
|
||||||
|
msgs.append({"role":"system","content":f"Relevant: {relevant}"})
|
||||||
|
msgs.extend(recent)
|
||||||
|
msgs.append({"role":"user","content":user_input})
|
||||||
|
ans = call_llm(msgs)
|
||||||
|
return ans
|
||||||
|
|
||||||
def post(self, s, pre, ans):
|
def post(self, s, pre, ans):
|
||||||
# Update chat history
|
user_input, _, _ = pre
|
||||||
s["history"] += [
|
s["history"].append({"role":"user","content":user_input})
|
||||||
{"role": "user", "content": pre["user_input"]},
|
s["history"].append({"role":"assistant","content":ans})
|
||||||
{"role": "assistant", "content": ans}
|
|
||||||
]
|
|
||||||
|
|
||||||
# When first reaching 8 messages, create index
|
# Manage memory index
|
||||||
if len(s["history"]) == 8:
|
if len(s["history"]) == 8:
|
||||||
embeddings = []
|
embs = []
|
||||||
for i in range(0, 8, 2):
|
for i in range(0, 8, 2):
|
||||||
e = s["history"][i]["content"] + " " + s["history"][i+1]["content"]
|
text = s["history"][i]["content"] + " " + s["history"][i+1]["content"]
|
||||||
embeddings.append(get_embedding(e))
|
embs.append(get_embedding(text))
|
||||||
s["memory_index"] = create_index(embeddings)
|
s["memory_index"] = create_index(embs)
|
||||||
|
|
||||||
# Embed older exchanges once we exceed 8 messages
|
|
||||||
elif len(s["history"]) > 8:
|
elif len(s["history"]) > 8:
|
||||||
pair = s["history"][-10:-8]
|
text = s["history"][-2]["content"] + " " + s["history"][-1]["content"]
|
||||||
embedding = get_embedding(pair[0]["content"] + " " + pair[1]["content"])
|
new_emb = np.array([get_embedding(text)]).astype('float32')
|
||||||
s["memory_index"].add(np.array([embedding]).astype('float32'))
|
s["memory_index"].add(new_emb)
|
||||||
|
|
||||||
print(f"Assistant: {ans}")
|
print(f"Assistant: {ans}")
|
||||||
return "continue"
|
return "continue"
|
||||||
|
|
||||||
chat = ChatWithMemory()
|
################################
|
||||||
chat - "continue" >> chat
|
# Flow wiring
|
||||||
flow = Flow(start=chat)
|
################################
|
||||||
flow.run({})
|
retrieve = ChatRetrieve()
|
||||||
|
reply = ChatReply()
|
||||||
|
retrieve - "continue" >> reply
|
||||||
|
reply - "continue" >> retrieve
|
||||||
|
|
||||||
|
flow = Flow(start=retrieve)
|
||||||
|
shared = {}
|
||||||
|
flow.run(shared)
|
||||||
```
|
```
|
||||||
|
|
|
||||||
|
|
@ -12,6 +12,14 @@ nav_order: 6
|
||||||
> Because of Python’s GIL, parallel nodes and flows can’t truly parallelize CPU-bound tasks (e.g., heavy numerical computations). However, they excel at overlapping I/O-bound work—like LLM calls, database queries, API requests, or file I/O.
|
> Because of Python’s GIL, parallel nodes and flows can’t truly parallelize CPU-bound tasks (e.g., heavy numerical computations). However, they excel at overlapping I/O-bound work—like LLM calls, database queries, API requests, or file I/O.
|
||||||
{: .warning }
|
{: .warning }
|
||||||
|
|
||||||
|
> - **Ensure Tasks Are Independent**: If each item depends on the output of a previous item, **do not** parallelize.
|
||||||
|
>
|
||||||
|
> - **Beware of Rate Limits**: Parallel calls can **quickly** trigger rate limits on LLM services. You may need a **throttling** mechanism (e.g., semaphores or sleep intervals).
|
||||||
|
>
|
||||||
|
> - **Consider Single-Node Batch APIs**: Some LLMs offer a **batch inference** API where you can send multiple prompts in a single call. This is more complex to implement but can be more efficient than launching many parallel requests and mitigates rate limits.
|
||||||
|
{: .best-practice }
|
||||||
|
|
||||||
|
|
||||||
## AsyncParallelBatchNode
|
## AsyncParallelBatchNode
|
||||||
|
|
||||||
Like **AsyncBatchNode**, but run `exec_async()` in **parallel**:
|
Like **AsyncBatchNode**, but run `exec_async()` in **parallel**:
|
||||||
|
|
@ -47,12 +55,3 @@ sub_flow = AsyncFlow(start=LoadAndSummarizeFile())
|
||||||
parallel_flow = SummarizeMultipleFiles(start=sub_flow)
|
parallel_flow = SummarizeMultipleFiles(start=sub_flow)
|
||||||
await parallel_flow.run_async(shared)
|
await parallel_flow.run_async(shared)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
## Best Practices
|
|
||||||
|
|
||||||
- **Ensure Tasks Are Independent**: If each item depends on the output of a previous item, **do not** parallelize.
|
|
||||||
|
|
||||||
- **Beware of Rate Limits**: Parallel calls can **quickly** trigger rate limits on LLM services. You may need a **throttling** mechanism (e.g., semaphores or sleep intervals).
|
|
||||||
|
|
||||||
- **Consider Single-Node Batch APIs**: Some LLMs offer a **batch inference** API where you can send multiple prompts in a single call. This is more complex to implement but can be more efficient than launching many parallel requests and mitigates rate limits.
|
|
||||||
|
|
|
||||||
42
docs/rag.md
42
docs/rag.md
|
|
@ -15,32 +15,42 @@ Use [vector search](./tool.md) to find relevant context for LLM responses.
|
||||||
```python
|
```python
|
||||||
class PrepareEmbeddings(Node):
|
class PrepareEmbeddings(Node):
|
||||||
def prep(self, shared):
|
def prep(self, shared):
|
||||||
texts = shared["texts"]
|
return shared["texts"]
|
||||||
embeddings = [get_embedding(text) for text in texts]
|
|
||||||
shared["search_index"] = create_index(embeddings)
|
def exec(self, texts):
|
||||||
|
# Embed each text chunk
|
||||||
|
embs = [get_embedding(t) for t in texts]
|
||||||
|
return embs
|
||||||
|
|
||||||
|
def post(self, shared, prep_res, exec_res):
|
||||||
|
shared["search_index"] = create_index(exec_res)
|
||||||
|
# no action string means "default"
|
||||||
|
|
||||||
class AnswerQuestion(Node):
|
class AnswerQuestion(Node):
|
||||||
def prep(self, shared):
|
def prep(self, shared):
|
||||||
question = input("Enter question: ")
|
question = input("Enter question: ")
|
||||||
query_embedding = get_embedding(question)
|
return question
|
||||||
indices, _ = search_index(shared["search_index"], query_embedding, top_k=1)
|
|
||||||
relevant_text = shared["texts"][indices[0][0]]
|
|
||||||
return question, relevant_text
|
|
||||||
|
|
||||||
def exec(self, inputs):
|
def exec(self, question):
|
||||||
question, context = inputs
|
q_emb = get_embedding(question)
|
||||||
prompt = f"Question: {question}\nContext: {context}\nAnswer: "
|
idx, _ = search_index(shared["search_index"], q_emb, top_k=1)
|
||||||
|
best_id = idx[0][0]
|
||||||
|
relevant_text = shared["texts"][best_id]
|
||||||
|
prompt = f"Question: {question}\nContext: {relevant_text}\nAnswer:"
|
||||||
return call_llm(prompt)
|
return call_llm(prompt)
|
||||||
|
|
||||||
def post(self, shared, prep_res, exec_res):
|
def post(self, shared, p, answer):
|
||||||
print(f"Answer: {exec_res}")
|
print("Answer:", answer)
|
||||||
|
|
||||||
# Connect nodes
|
############################################
|
||||||
|
# Wire up the flow
|
||||||
prep = PrepareEmbeddings()
|
prep = PrepareEmbeddings()
|
||||||
qa = AnswerQuestion()
|
qa = AnswerQuestion()
|
||||||
prep >> qa
|
prep >> qa
|
||||||
|
|
||||||
# Create flow
|
flow = Flow(start=prep)
|
||||||
qa_flow = Flow(start=prep)
|
|
||||||
qa_flow.run(shared)
|
# Example usage
|
||||||
|
shared = {"texts": ["I love apples", "Cats are great", "The sky is blue"]}
|
||||||
|
flow.run(shared)
|
||||||
```
|
```
|
||||||
|
|
@ -83,6 +83,9 @@ summary:
|
||||||
return structured_result
|
return structured_result
|
||||||
```
|
```
|
||||||
|
|
||||||
|
> Besides using `assert` statements, another popular way to validate schemas is [Pydantic](https://github.com/pydantic/pydantic)
|
||||||
|
{: .note }
|
||||||
|
|
||||||
### Why YAML instead of JSON?
|
### Why YAML instead of JSON?
|
||||||
|
|
||||||
Current LLMs struggle with escaping. YAML is easier with strings since they don't always need quotes.
|
Current LLMs struggle with escaping. YAML is easier with strings since they don't always need quotes.
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,6 @@ Similar to LLM wrappers, we **don't** provide built-in tools. Here, we recommend
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
|
|
||||||
## 1. Embedding Calls
|
## 1. Embedding Calls
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
|
|
||||||
|
|
@ -140,5 +140,3 @@ data_science_flow.run({})
|
||||||
The output would be: `Call stack: ['EvaluateModelNode', 'ModelFlow', 'DataScienceFlow']`
|
The output would be: `Call stack: ['EvaluateModelNode', 'ModelFlow', 'DataScienceFlow']`
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue