remove essay example
This commit is contained in:
parent
7dba820188
commit
30b647c0ed
|
|
@ -1,6 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Apps"
|
||||
nav_order: 5
|
||||
has_children: true
|
||||
---
|
||||
150
docs/essay.md
150
docs/essay.md
|
|
@ -1,150 +0,0 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Essay"
|
||||
parent: "Apps"
|
||||
nav_order: 2
|
||||
---
|
||||
|
||||
# Summarization + QA agent for Paul Graham Essay
|
||||
|
||||
```python
|
||||
from pocketflow import *
|
||||
import openai, os, yaml
|
||||
|
||||
# Minimal LLM wrapper
|
||||
def call_llm(prompt):
|
||||
openai.api_key = "YOUR_API_KEY_HERE"
|
||||
r = openai.ChatCompletion.create(
|
||||
model="gpt-4o",
|
||||
messages=[{"role": "user", "content": prompt}]
|
||||
)
|
||||
return r.choices[0].message.content
|
||||
|
||||
shared = {"data": {}, "summary": {}}
|
||||
|
||||
# Load data into shared['data']
|
||||
class LoadData(Node):
|
||||
def prep(self, shared):
|
||||
path = "./PocketFlow/data/PaulGrahamEssaysLarge"
|
||||
for fn in os.listdir(path):
|
||||
with open(os.path.join(path, fn), 'r') as f:
|
||||
shared['data'][fn] = f.read()
|
||||
def exec(self, res): pass
|
||||
def post(self, s, pr, er): pass
|
||||
|
||||
LoadData().run(shared)
|
||||
|
||||
# Summarize one file
|
||||
class SummarizeFile(Node):
|
||||
def prep(self, s): return s['data'][self.params['filename']]
|
||||
def exec(self, content): return call_llm(f"{content} Summarize in 10 words.")
|
||||
def post(self, s, pr, sr): s["summary"][self.params['filename']] = sr
|
||||
|
||||
node_summ = SummarizeFile()
|
||||
node_summ.set_params({"filename":"addiction.txt"})
|
||||
node_summ.run(shared)
|
||||
|
||||
# Map-Reduce summarization
|
||||
class MapSummaries(BatchNode):
|
||||
def prep(self, s):
|
||||
text = s['data'][self.params['filename']]
|
||||
return [text[i:i+10000] for i in range(0, len(text), 10000)]
|
||||
def exec(self, chunk):
|
||||
return call_llm(f"{chunk} Summarize in 10 words.")
|
||||
def post(self, s, pr, er):
|
||||
s["summary"][self.params['filename']] = [f"{i}. {r}" for i,r in enumerate(er)]
|
||||
|
||||
class ReduceSummaries(Node):
|
||||
def prep(self, s): return s["summary"][self.params['filename']]
|
||||
def exec(self, chunks): return call_llm(f"{chunks} Combine into 10 words summary.")
|
||||
def post(self, s, pr, sr): s["summary"][self.params['filename']] = sr
|
||||
|
||||
map_summ = MapSummaries()
|
||||
reduce_summ = ReduceSummaries()
|
||||
map_summ >> reduce_summ
|
||||
|
||||
flow = Flow(start=map_summ)
|
||||
flow.set_params({"filename":"before.txt"})
|
||||
flow.run(shared)
|
||||
|
||||
# Summarize all files
|
||||
class SummarizeAllFiles(BatchFlow):
|
||||
def prep(self, s): return [{"filename":fn} for fn in s['data']]
|
||||
|
||||
SummarizeAllFiles(start=flow).run(shared)
|
||||
|
||||
# QA agent
|
||||
class FindRelevantFile(Node):
|
||||
def prep(self, s):
|
||||
q = input("Enter a question: ")
|
||||
filenames = list(s['summary'].keys())
|
||||
file_summaries = [f"- '{fn}': {s['summary'][fn]}" for fn in filenames]
|
||||
return q, filenames, file_summaries
|
||||
|
||||
def exec(self, p):
|
||||
q, filenames, file_summaries = p
|
||||
if not q:
|
||||
return {"think":"no question", "has_relevant":False}
|
||||
|
||||
resp = call_llm(f"""
|
||||
Question: {q}
|
||||
Find the most relevant file from: {file_summaries}
|
||||
If none, explain why
|
||||
|
||||
Output in code fence:
|
||||
```yaml
|
||||
think: >
|
||||
reasoning about relevance
|
||||
has_relevant: true/false
|
||||
most_relevant: filename if relevant
|
||||
```""")
|
||||
yaml_str = resp.split("```yaml")[1].split("```")[0].strip()
|
||||
result = yaml.safe_load(yaml_str)
|
||||
|
||||
# Validate response
|
||||
assert isinstance(result, dict)
|
||||
assert "think" in result
|
||||
assert "has_relevant" in result
|
||||
assert isinstance(result["has_relevant"], bool)
|
||||
|
||||
if result["has_relevant"]:
|
||||
assert "most_relevant" in result
|
||||
assert result["most_relevant"] in filenames
|
||||
|
||||
return result
|
||||
|
||||
def exec_fallback(self, p, exc): return {"think":"error","has_relevant":False}
|
||||
def post(self, s, pr, res):
|
||||
q, _ = pr
|
||||
if not q:
|
||||
print("No question asked"); return "end"
|
||||
if res["has_relevant"]:
|
||||
s["question"], s["relevant_file"] = q, res["most_relevant"]
|
||||
print("Relevant file:", res["most_relevant"])
|
||||
return "answer"
|
||||
else:
|
||||
print("No relevant file:", res["think"])
|
||||
return "retry"
|
||||
|
||||
class AnswerQuestion(Node):
|
||||
def prep(self, s):
|
||||
return s['question'], s['data'][s['relevant_file']]
|
||||
def exec(self, p):
|
||||
q, txt = p
|
||||
return call_llm(f"Question: {q}\nText: {txt}\nAnswer in 50 words.")
|
||||
def post(self, s, pr, ex):
|
||||
print("Answer:", ex)
|
||||
|
||||
class NoOp(Node): pass
|
||||
|
||||
frf = FindRelevantFile(max_retries=3)
|
||||
aq = AnswerQuestion()
|
||||
noop = NoOp()
|
||||
|
||||
frf - "answer" >> aq >> frf
|
||||
frf - "retry" >> frf
|
||||
frf - "end" >> noop
|
||||
|
||||
qa = Flow(start=frf)
|
||||
qa.run(shared)
|
||||
```
|
||||
|
|
@ -1,8 +1,6 @@
|
|||
---
|
||||
layout: default
|
||||
title: "Development Playbook"
|
||||
parent: "Apps"
|
||||
nav_order: 1
|
||||
---
|
||||
|
||||
# LLM Application Development Playbook
|
||||
|
|
@ -38,7 +36,6 @@ These system designs should be a collaboration between humans and AI assistants:
|
|||
- Writing outputs (e.g., generating reports, sending emails)
|
||||
- External tool usage (e.g., calling LLMs, searching the web)
|
||||
- **LLM-based tasks** (e.g., summarizing text, analyzing sentiment) are **not** utility functions. Instead, they are *internal core functions* within the AI system—designed in step 3—and are built on top of the utility functions.
|
||||
|
||||
- > **Start small!** Only include the most important ones to begin with!
|
||||
{: .best-practice }
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue