update parallel tutorial

This commit is contained in:
zachary62 2025-03-20 13:20:10 -04:00
parent 60d9631204
commit 25b742e29a
15 changed files with 260 additions and 1402 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,18 +1,4 @@
{ {
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
@ -26,8 +12,8 @@
}, },
"outputs": [ "outputs": [
{ {
"output_type": "stream",
"name": "stdout", "name": "stdout",
"output_type": "stream",
"text": [ "text": [
"Collecting pocketflow\n", "Collecting pocketflow\n",
" Downloading pocketflow-0.0.1-py3-none-any.whl.metadata (270 bytes)\n", " Downloading pocketflow-0.0.1-py3-none-any.whl.metadata (270 bytes)\n",
@ -43,121 +29,16 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"source": [ "execution_count": 3,
"import asyncio\n",
"import time\n",
"\n",
"from pocketflow import AsyncBatchNode, AsyncParallelBatchNode, AsyncFlow\n",
"\n",
"####################################\n",
"# Dummy async function (1s delay)\n",
"####################################\n",
"async def dummy_llm_summarize(text):\n",
" \"\"\"Simulates an async LLM call that takes 1 second.\"\"\"\n",
" await asyncio.sleep(1)\n",
" return f\"Summarized({len(text)} chars)\"\n",
"\n",
"###############################################\n",
"# 1) AsyncBatchNode (sequential) version\n",
"###############################################\n",
"\n",
"class SummariesAsyncNode(AsyncBatchNode):\n",
" \"\"\"\n",
" Processes items sequentially in an async manner.\n",
" The next item won't start until the previous item has finished.\n",
" \"\"\"\n",
"\n",
" async def prep_async(self, shared):\n",
" # Return a list of items to process.\n",
" # Each item is (filename, content).\n",
" return list(shared[\"data\"].items())\n",
"\n",
" async def exec_async(self, item):\n",
" filename, content = item\n",
" print(f\"[Sequential] Summarizing {filename}...\")\n",
" summary = await dummy_llm_summarize(content)\n",
" return (filename, summary)\n",
"\n",
" async def post_async(self, shared, prep_res, exec_res_list):\n",
" # exec_res_list is a list of (filename, summary)\n",
" shared[\"sequential_summaries\"] = dict(exec_res_list)\n",
" return \"done_sequential\"\n",
"\n",
"###############################################\n",
"# 2) AsyncParallelBatchNode (concurrent) version\n",
"###############################################\n",
"\n",
"class SummariesAsyncParallelNode(AsyncParallelBatchNode):\n",
" \"\"\"\n",
" Processes items in parallel. Many LLM calls start at once.\n",
" \"\"\"\n",
"\n",
" async def prep_async(self, shared):\n",
" return list(shared[\"data\"].items())\n",
"\n",
" async def exec_async(self, item):\n",
" filename, content = item\n",
" print(f\"[Parallel] Summarizing {filename}...\")\n",
" summary = await dummy_llm_summarize(content)\n",
" return (filename, summary)\n",
"\n",
" async def post_async(self, shared, prep_res, exec_res_list):\n",
" shared[\"parallel_summaries\"] = dict(exec_res_list)\n",
" return \"done_parallel\"\n",
"\n",
"###############################################\n",
"# Demo comparing the two approaches\n",
"###############################################\n",
"\n",
"async def main():\n",
" # We'll use the same data for both flows\n",
" shared_data = {\n",
" \"data\": {\n",
" \"file1.txt\": \"Hello world 1\",\n",
" \"file2.txt\": \"Hello world 2\",\n",
" \"file3.txt\": \"Hello world 3\",\n",
" }\n",
" }\n",
"\n",
" # 1) Run the sequential version\n",
" seq_node = SummariesAsyncNode()\n",
" seq_flow = AsyncFlow(start=seq_node)\n",
"\n",
" print(\"\\n=== Running Sequential (AsyncBatchNode) ===\")\n",
" t0 = time.time()\n",
" await seq_flow.run_async(shared_data)\n",
" t1 = time.time()\n",
"\n",
" # 2) Run the parallel version\n",
" par_node = SummariesAsyncParallelNode()\n",
" par_flow = AsyncFlow(start=par_node)\n",
"\n",
" print(\"\\n=== Running Parallel (AsyncParallelBatchNode) ===\")\n",
" t2 = time.time()\n",
" await par_flow.run_async(shared_data)\n",
" t3 = time.time()\n",
"\n",
" # Show times\n",
" print(\"\\n--- Results ---\")\n",
" print(f\"Sequential Summaries: {shared_data.get('sequential_summaries')}\")\n",
" print(f\"Parallel Summaries: {shared_data.get('parallel_summaries')}\")\n",
"\n",
" print(f\"Sequential took: {t1 - t0:.2f} seconds\")\n",
" print(f\"Parallel took: {t3 - t2:.2f} seconds\")\n"
],
"metadata": { "metadata": {
"id": "mHZpGv8txy4L" "id": "mHZpGv8txy4L"
}, },
"execution_count": 3, "outputs": [],
"outputs": [] "source": []
}, },
{ {
"cell_type": "code", "cell_type": "code",
"source": [ "execution_count": 5,
"# if in a py project\n",
"# asyncio.run(main())\n",
"await main()"
],
"metadata": { "metadata": {
"colab": { "colab": {
"base_uri": "https://localhost:8080/" "base_uri": "https://localhost:8080/"
@ -165,11 +46,10 @@
"id": "zfnhW3f-0W6o", "id": "zfnhW3f-0W6o",
"outputId": "3737e2e5-5cae-4c6b-a894-e880cf338d1f" "outputId": "3737e2e5-5cae-4c6b-a894-e880cf338d1f"
}, },
"execution_count": 5,
"outputs": [ "outputs": [
{ {
"output_type": "stream",
"name": "stdout", "name": "stdout",
"output_type": "stream",
"text": [ "text": [
"\n", "\n",
"=== Running Sequential (AsyncBatchNode) ===\n", "=== Running Sequential (AsyncBatchNode) ===\n",
@ -189,16 +69,36 @@
"Parallel took: 1.00 seconds\n" "Parallel took: 1.00 seconds\n"
] ]
} }
],
"source": [
"# if in a notebook\n",
"await main()\n",
"\n",
"asyncio.run(main())"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"source": [], "execution_count": null,
"metadata": { "metadata": {
"id": "ystwa74D0Z_k" "id": "ystwa74D0Z_k"
}, },
"execution_count": null, "outputs": [],
"outputs": [] "source": []
} }
] ],
} "metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -1,105 +0,0 @@
# PocketFlow Parallel Batch Node Example
This example demonstrates parallel processing using AsyncParallelBatchNode to summarize multiple news articles concurrently. It shows how to:
1. Process multiple items in parallel
2. Handle I/O-bound tasks efficiently
3. Manage rate limits with throttling
## What this Example Does
When you run the example:
1. It loads multiple news articles from a data directory
2. Processes them in parallel using AsyncParallelBatchNode
3. For each article:
- Extracts key information
- Generates a summary using an LLM
- Saves the results
4. Combines all summaries into a final report
## How it Works
The example uses AsyncParallelBatchNode to process articles in parallel:
```python
class ParallelSummarizer(AsyncParallelBatchNode):
async def prep_async(self, shared):
# Return list of articles to process
return shared["articles"]
async def exec_async(self, article):
# Process single article (called in parallel)
summary = await call_llm_async(f"Summarize: {article}")
return summary
async def post_async(self, shared, prep_res, summaries):
# Combine all summaries
shared["summaries"] = summaries
return "default"
```
Key features demonstrated:
- Parallel execution of `exec_async`
- Rate limiting with semaphores
- Error handling for failed requests
- Progress tracking for parallel tasks
## Project Structure
```
pocketflow-parallel-batch-node/
├── README.md
├── requirements.txt
├── data/
│ ├── article1.txt
│ ├── article2.txt
│ └── article3.txt
├── main.py
├── flow.py
├── nodes.py
└── utils.py
```
## Running the Example
```bash
# Install dependencies
pip install -r requirements.txt
# Run the example
python main.py
```
## Sample Output
```
Loading articles...
Found 3 articles to process
Processing in parallel...
[1/3] Processing article1.txt...
[2/3] Processing article2.txt...
[3/3] Processing article3.txt...
Summaries generated:
1. First article summary...
2. Second article summary...
3. Third article summary...
Final report saved to: summaries.txt
```
## Key Concepts
1. **Parallel Processing**
- Using AsyncParallelBatchNode for concurrent execution
- Managing parallel tasks efficiently
2. **Rate Limiting**
- Using semaphores to control concurrent requests
- Avoiding API rate limits
3. **Error Handling**
- Graceful handling of failed requests
- Retrying failed tasks
4. **Progress Tracking**
- Monitoring parallel task progress
- Providing user feedback

View File

@ -1 +0,0 @@
Article 1: AI advances in 2024...

View File

@ -1 +0,0 @@
Article 2: New quantum computing breakthrough...

View File

@ -1 +0,0 @@
Article 3: Latest developments in robotics...

View File

@ -1,3 +0,0 @@
1. Summary of: Article 1: AI advances in 2024...
2. Summary of: Article 2: New quantum computi...
3. Summary of: Article 3: Latest developments...

View File

@ -1,24 +0,0 @@
"""AsyncFlow implementation for parallel article processing."""
from pocketflow import AsyncFlow, Node
from nodes import LoadArticles, ParallelSummarizer
class NoOp(Node):
"""Node that does nothing, used to properly end the flow."""
pass
def create_flow():
"""Create and connect nodes into a flow."""
# Create nodes
loader = LoadArticles()
summarizer = ParallelSummarizer()
end = NoOp()
# Connect nodes
loader - "process" >> summarizer
summarizer - "default" >> end # Properly end the flow
# Create flow starting with loader
flow = AsyncFlow(start=loader)
return flow

View File

@ -1,19 +0,0 @@
import asyncio
from flow import create_flow
async def main():
"""Run the parallel processing flow."""
# Create flow
flow = create_flow()
# Create shared store
shared = {}
# Run flow
print("\nParallel Article Summarizer")
print("-------------------------")
await flow.run_async(shared)
if __name__ == "__main__":
# Run the async main function
asyncio.run(main())

View File

@ -1,48 +0,0 @@
"""AsyncParallelBatchNode implementation for article summarization."""
from pocketflow import AsyncParallelBatchNode, AsyncNode
from utils import call_llm_async, load_articles, save_summaries
class LoadArticles(AsyncNode):
"""Node that loads articles to process."""
async def prep_async(self, shared):
"""Load articles from data directory."""
print("\nLoading articles...")
articles = await load_articles()
return articles
async def exec_async(self, articles):
"""No processing needed."""
return articles
async def post_async(self, shared, prep_res, exec_res):
"""Store articles in shared store."""
shared["articles"] = exec_res
print(f"Found {len(exec_res)} articles to process")
return "process"
class ParallelSummarizer(AsyncParallelBatchNode):
"""Node that summarizes articles in parallel."""
async def prep_async(self, shared):
"""Get articles from shared store."""
print("\nProcessing in parallel...")
return shared["articles"]
async def exec_async(self, article):
"""Summarize a single article (called in parallel)."""
summary = await call_llm_async(article)
return summary
async def post_async(self, shared, prep_res, summaries):
"""Store summaries and save to file."""
shared["summaries"] = summaries
print("\nSummaries generated:")
for i, summary in enumerate(summaries, 1):
print(f"{i}. {summary}")
save_summaries(summaries)
print("\nFinal report saved to: summaries.txt")
return "default"

View File

@ -1,4 +0,0 @@
pocketflow
aiohttp>=3.8.0 # For async HTTP requests
openai>=1.0.0 # For async LLM calls
tqdm>=4.65.0 # For progress bars

View File

@ -1,53 +0,0 @@
"""Utility functions for parallel processing."""
import os
import asyncio
import aiohttp
from openai import AsyncOpenAI
from tqdm import tqdm
# Semaphore to limit concurrent API calls
MAX_CONCURRENT_CALLS = 3
semaphore = asyncio.Semaphore(MAX_CONCURRENT_CALLS)
async def call_llm_async(prompt):
"""Make async LLM call with rate limiting."""
async with semaphore: # Limit concurrent calls
print(f"\nProcessing: {prompt[:50]}...")
# Simulate API call with delay
await asyncio.sleep(1)
# Mock LLM response (in real app, would call OpenAI)
summary = f"Summary of: {prompt[:30]}..."
return summary
async def load_articles():
"""Load articles from data directory."""
# For demo, generate mock articles
articles = [
"Article 1: AI advances in 2024...",
"Article 2: New quantum computing breakthrough...",
"Article 3: Latest developments in robotics..."
]
# Create data directory if it doesn't exist
data_dir = "data"
os.makedirs(data_dir, exist_ok=True)
# Save mock articles to files
for i, content in enumerate(articles, 1):
with open(os.path.join(data_dir, f"article{i}.txt"), "w") as f:
f.write(content)
return articles
def save_summaries(summaries):
"""Save summaries to output file."""
# Create data directory if it doesn't exist
data_dir = "data"
os.makedirs(data_dir, exist_ok=True)
with open(os.path.join(data_dir, "summaries.txt"), "w") as f:
for i, summary in enumerate(summaries, 1):
f.write(f"{i}. {summary}\n")

View File

@ -0,0 +1,41 @@
# Sequential vs Parallel Processing
Demonstrates how AsyncParallelBatchNode accelerates processing by 3x over AsyncBatchNode.
## Features
- Processes identical tasks with two approaches
- Compares sequential vs parallel execution time
- Shows 3x speed improvement with parallel processing
## Run It
```bash
pip install pocketflow
python main.py
```
## Output
```
=== Running Sequential (AsyncBatchNode) ===
[Sequential] Summarizing file1.txt...
[Sequential] Summarizing file2.txt...
[Sequential] Summarizing file3.txt...
=== Running Parallel (AsyncParallelBatchNode) ===
[Parallel] Summarizing file1.txt...
[Parallel] Summarizing file2.txt...
[Parallel] Summarizing file3.txt...
Sequential took: 3.00 seconds
Parallel took: 1.00 seconds
```
## Key Points
- **Sequential**: Total time = sum of all item times
- Good for: Rate-limited APIs, maintaining order
- **Parallel**: Total time ≈ longest single item time
- Good for: I/O-bound tasks, independent operations

View File

@ -0,0 +1,103 @@
import asyncio
import time
from pocketflow import AsyncBatchNode, AsyncParallelBatchNode, AsyncFlow
####################################
# Dummy async function (1s delay)
####################################
async def dummy_llm_summarize(text):
"""Simulates an async LLM call that takes 1 second."""
await asyncio.sleep(1)
return f"Summarized({len(text)} chars)"
###############################################
# 1) AsyncBatchNode (sequential) version
###############################################
class SummariesAsyncNode(AsyncBatchNode):
"""
Processes items sequentially in an async manner.
The next item won't start until the previous item has finished.
"""
async def prep_async(self, shared):
# Return a list of items to process.
# Each item is (filename, content).
return list(shared["data"].items())
async def exec_async(self, item):
filename, content = item
print(f"[Sequential] Summarizing {filename}...")
summary = await dummy_llm_summarize(content)
return (filename, summary)
async def post_async(self, shared, prep_res, exec_res_list):
# exec_res_list is a list of (filename, summary)
shared["sequential_summaries"] = dict(exec_res_list)
return "done_sequential"
###############################################
# 2) AsyncParallelBatchNode (concurrent) version
###############################################
class SummariesAsyncParallelNode(AsyncParallelBatchNode):
"""
Processes items in parallel. Many LLM calls start at once.
"""
async def prep_async(self, shared):
return list(shared["data"].items())
async def exec_async(self, item):
filename, content = item
print(f"[Parallel] Summarizing {filename}...")
summary = await dummy_llm_summarize(content)
return (filename, summary)
async def post_async(self, shared, prep_res, exec_res_list):
shared["parallel_summaries"] = dict(exec_res_list)
return "done_parallel"
###############################################
# Demo comparing the two approaches
###############################################
async def main():
# We'll use the same data for both flows
shared_data = {
"data": {
"file1.txt": "Hello world 1",
"file2.txt": "Hello world 2",
"file3.txt": "Hello world 3",
}
}
# 1) Run the sequential version
seq_node = SummariesAsyncNode()
seq_flow = AsyncFlow(start=seq_node)
print("\n=== Running Sequential (AsyncBatchNode) ===")
t0 = time.time()
await seq_flow.run_async(shared_data)
t1 = time.time()
# 2) Run the parallel version
par_node = SummariesAsyncParallelNode()
par_flow = AsyncFlow(start=par_node)
print("\n=== Running Parallel (AsyncParallelBatchNode) ===")
t2 = time.time()
await par_flow.run_async(shared_data)
t3 = time.time()
# Show times
print("\n--- Results ---")
print(f"Sequential Summaries: {shared_data.get('sequential_summaries')}")
print(f"Parallel Summaries: {shared_data.get('parallel_summaries')}")
print(f"Sequential took: {t1 - t0:.2f} seconds")
print(f"Parallel took: {t3 - t2:.2f} seconds")
if __name__ == "__main__":
asyncio.run(main())

View File

@ -0,0 +1 @@
pocketflow>=0.0.1