llm wrapper
This commit is contained in:
parent
34eee02da3
commit
0a420b3513
|
|
@ -7,10 +7,12 @@ nav_order: 1
|
|||
|
||||
# LLM Wrappers
|
||||
|
||||
We **don't** provide built-in LLM wrappers. Instead, please implement your own, for example by asking an assistant like ChatGPT or Claude. If you ask ChatGPT to "implement a `call_llm` function that takes a prompt and returns the LLM response," you shall get something like:
|
||||
We **don't** provide built-in LLM wrappers. Instead, please implement your own or check out libraries like [litellm](https://github.com/BerriAI/litellm).
|
||||
Here, we provide some minimal example implementations:
|
||||
|
||||
```python
|
||||
def call_llm(prompt):
|
||||
1. OpenAI
|
||||
```python
|
||||
def call_llm(prompt):
|
||||
from openai import OpenAI
|
||||
client = OpenAI(api_key="YOUR_API_KEY_HERE")
|
||||
r = client.chat.completions.create(
|
||||
|
|
@ -19,12 +21,62 @@ def call_llm(prompt):
|
|||
)
|
||||
return r.choices[0].message.content
|
||||
|
||||
# Example usage
|
||||
call_llm("How are you?")
|
||||
```
|
||||
# Example usage
|
||||
call_llm("How are you?")
|
||||
```
|
||||
> Store the API key in an environment variable like OPENAI_API_KEY for security.
|
||||
|
||||
> Store the API key in an environment variable like OPENAI_API_KEY for security.
|
||||
{: .note }
|
||||
2. Claude (Anthropic)
|
||||
```python
|
||||
def call_llm(prompt):
|
||||
from anthropic import Anthropic
|
||||
client = Anthropic(api_key="YOUR_API_KEY_HERE")
|
||||
response = client.messages.create(
|
||||
model="claude-2",
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
max_tokens=100
|
||||
)
|
||||
return response.content
|
||||
```
|
||||
|
||||
3. Google (Generative AI Studio / PaLM API)
|
||||
```python
|
||||
def call_llm(prompt):
|
||||
import google.generativeai as genai
|
||||
genai.configure(api_key="YOUR_API_KEY_HERE")
|
||||
response = genai.generate_text(
|
||||
model="models/text-bison-001",
|
||||
prompt=prompt
|
||||
)
|
||||
return response.result
|
||||
```
|
||||
|
||||
4. Azure (Azure OpenAI)
|
||||
```python
|
||||
def call_llm(prompt):
|
||||
from openai import AzureOpenAI
|
||||
client = AzureOpenAI(
|
||||
azure_endpoint="https://<YOUR_RESOURCE_NAME>.openai.azure.com/",
|
||||
api_key="YOUR_API_KEY_HERE",
|
||||
api_version="2023-05-15"
|
||||
)
|
||||
r = client.chat.completions.create(
|
||||
model="<YOUR_DEPLOYMENT_NAME>",
|
||||
messages=[{"role": "user", "content": prompt}]
|
||||
)
|
||||
return r.choices[0].message.content
|
||||
```
|
||||
|
||||
5. Ollama (Local LLM)
|
||||
```python
|
||||
def call_llm(prompt):
|
||||
from ollama import chat
|
||||
response = chat(
|
||||
model="llama2",
|
||||
messages=[{"role": "user", "content": prompt}]
|
||||
)
|
||||
return response.message.content
|
||||
```
|
||||
|
||||
## Improvements
|
||||
Feel free to enhance your `call_llm` function as needed. Here are examples:
|
||||
|
|
|
|||
Loading…
Reference in New Issue