# This script gathers upcoming events, recent emails, and journal entries; # then it searches your flat-file KB for related notes based on tags; # finally, it compiles all the information into a briefing. # # (Optionally, you can send the briefing text to an LLM API for enhancement.) import os, glob, yaml from datetime import datetime # Placeholder function for the LLM API call def generate_briefing(text): # Replace with actual API call if needed return f"Enhanced Briefing:\n\n{text}" def get_upcoming_events(): # In a real scenario, fetch events from a calendar source. events = [ {"title": "Project Meeting", "datetime": "2025-02-17 10:00", "tags": ["meeting", "projectX"]}, {"title": "Code Review", "datetime": "2025-02-17 14:00", "tags": ["review", "code"]}, ] return events def get_recent_emails(): # Simulate fetching recent emails (could be replaced with a file or API call) emails = [ {"subject": "Follow-up on project", "content": "Let's discuss the new project approach", "tags": ["projectX"]}, ] return emails def get_journal_entries(): # Simulate fetching journal entries (for example, from text files) journals = [ {"date": "2025-02-15", "content": "Had a breakthrough with the complex feature."}, ] return journals def search_kb_for_tags(tags, kb_dir="path/to/kb"): notes = [] # Scan all Markdown files in the KB directory for md_file in glob.glob(os.path.join(kb_dir, "*.md")): with open(md_file, "r", encoding="utf-8") as f: content = f.read() if content.startswith("---"): # Extract YAML front matter (assumes two '---' delimiters) end = content.find("---", 3) if end != -1: frontmatter_str = content[3:end] try: metadata = yaml.safe_load(frontmatter_str) if "tags" in metadata and any(tag in metadata["tags"] for tag in tags): notes.append({"id": metadata.get("id", md_file), "tags": metadata["tags"], "file": md_file}) except Exception as e: print(f"Error parsing {md_file}: {e}") return notes def build_briefing(): events = get_upcoming_events() emails = get_recent_emails() journals = get_journal_entries() # Aggregate tags from events and emails to search the KB tags = set() for item in events + emails: if "tags" in item: tags.update(item["tags"]) kb_notes = search_kb_for_tags(tags) # Build the briefing text briefing_text = "Upcoming Briefing:\n\n" briefing_text += "Events:\n" for event in events: briefing_text += f"- {event['datetime']}: {event['title']}\n" briefing_text += "\nEmails:\n" for email in emails: briefing_text += f"- {email['subject']}: {email['content']}\n" briefing_text += "\nJournal Entries:\n" for journal in journals: briefing_text += f"- {journal['date']}: {journal['content']}\n" briefing_text += "\nRelated KB Notes:\n" for note in kb_notes: briefing_text += f"- Note {note['id']} with tags {', '.join(note['tags'])}\n" # Optionally, send the briefing text to an LLM API to enhance it enhanced_briefing = generate_briefing(briefing_text) return enhanced_briefing def main(): briefing = build_briefing() with open("briefing.txt", "w", encoding="utf-8") as f: f.write(briefing) print("Briefing generated and saved to briefing.txt") if __name__ == "__main__": main()