#get_schedule('201770') # from pipelines - canvas data # todo: where does the most recent schedule come from? # Input: xxxx_sched.json. Output: xxxx_latestarts.txt def list_latestarts(): #term = input("Name of current semester file? (ex: sp18) ") term = "sp23" # sems[0] term_in = "cache/" + term + "_sched.json" term_out = "cache/" + term + "_latestarts.txt" print("Writing output to " + term_out) infile = open(term_in, "r") outfile = open(term_out, "w") sched = json.loads(infile.read()) #print sched by_date = {} for C in sched: parts = C['date'].split("-") start = parts[0] codes = C['code'].split(' ') dept = codes[0] if dept in ['JLE','JFT','CWE']: continue if re.search('TBA',start): continue try: startd = parser.parse(start) except Exception as e: print(e, "\nproblem parsing ", start) #print startd if not startd in by_date: by_date[startd] = [] by_date[startd].append(C) for X in sorted(by_date.keys()): #print "Start: " + str(X) if len(by_date[X]) < 200: prettydate = X.strftime("%A, %B %d") print(prettydate + ": " + str(len(by_date[X])) + " courses") outfile.write(prettydate + ": " + str(len(by_date[X])) + " courses" + "\n") for Y in by_date[X]: #print "\t" + Y['code'] + " " + Y['crn'] + "\t" + Y['teacher'] print(Y) #outfile.write("\t" + Y['code'] + " " + Y['crn'] + "\t" + Y['teacher'] + "\t" + Y['type'] +"\n") outfile.write("\t" + Y['code'] + " " + Y['crn'] + "\t" + Y['teacher'] + "\t" + Y['type'] + "\t" + "\n") online_courses = {} def prep_online_courses_df(): global online_courses schedule = current_schedule() # from banner online_courses = schedule[lambda x: x.type=='online'] def course_is_online(crn): global online_courses #print "looking up: " + str(crn) #print online_courses course = online_courses[lambda x: x.crn==int(crn)] return len(course) def get_crn_from_name(name): #print "name is: " #print(name) m = re.search( r'(\d\d\d\d\d)', name) if m: return int(m.groups(1)[0]) else: return 0 def get_enrlmts_for_user(user,enrollments): #active enrollments u_en = enrollments[ lambda x: (x['user_id'] == user) & (x['workflow']=='active') ] return u_en[['type','course_id']] """ timestamp = nowAsStr() requestParts = [ method, host, '', #content Type Header '', #content MD5 Header path, '', #alpha-sorted Query Params timestamp, apiSecret ] #Build the request requestMessage = '\n'.join( requestParts ) requestMessage = requestMessage.encode('ASCII') print((requestMessage.__repr__())) hmacObject = hmac.new(bytearray(apiSecret,'ASCII'), bytearray('','ASCII'), hashlib.sha256) # hmacObject.update(requestMessage) hmac_digest = hmacObject.digest() sig = base64.b64encode(hmac_digest) headerDict = { 'Authorization' : 'HMACAuth ' + apiKey + ':' + str(sig), 'Date' : timestamp } """ # Don't know def demo(): resp = do_request('/api/account/self/file/sync') mylog.write(json.dumps(resp, indent=4)) sample_table = resp['files'][10] filename = sample_table['filename'] print(sample_table['table']) response = requests.request(method='GET', url=sample_table['url'], stream=True) if(response.status_code != 200): print(('Request response went bad. Got back a ', response.status_code, ' code, meaning the request was ', response.reason)) else: #Use the downloaded data with open(local_data_folder + filename, 'wb') as fd: for chunk in response.iter_content(chunk_size=128): fd.write(chunk) print("Success") if filename.split('.')[-1] == 'gz': plain_filename = 'canvas_data/' + ".".join(filename.split('.')[:-1]) pf = open(plain_filename,'w') with gzip.open('canvas_data/' + filename , 'rb') as f: pf.write(f.read()) # How to drop columns #columns = ['Col1', 'Col2', ...] #df.drop(columns, inplace=True, axis=1) # left join, one on column, one on index #merged = pd.merge(result,users,left_index=True,right_on='id', how='left') """ You can call set_index on the result of the dataframe: In [2]: data=[['Australia',100],['France',200],['Germany',300],['America',400]] pd.DataFrame(data,columns=['Country','Volume']).set_index('Country') Out[2]: Volume Country Australia 100 France 200 Germany 300 America 400 """ def stats(): # nothing seems to happen here? #input = csv.DictReader(codecs.open(schedfile,'r','utf-8')) input = csv.DictReader(open(schedfile,'r')) out2 = open('temp2.csv','w') clean = {} for r in input: if r['crn']: clean[ r['crn'] ] = r for c,r in list(clean.items()): try: if int(r['cap'])==0: continue else: prct = (1.0 * int( r['act'] )) / int(r['cap']) if prct < 0.01: continue o_str = '' if r['location'].strip()=='ONLINE': o_str = 'online' #print r['location'] date_parts = r['date'].split('-') start = strptime(date_parts[0], '%m/%d') if start > semester_begin: o_str += "\tlatestart " + date_parts[0] out2.write( "".join([c, "\t", r['sub'], "\t", r['crs'], "\t", str(round(prct,2)), "% full\t", o_str, "\n"]) ) except: pass ######### from curriculum. py # open('cache/programs/programs_1.txt','r').read() """ SEE serve.py .... i mean ... interactive.py def dict_generator(indict, pre=None): pre = pre[:] if pre else [] if isinstance(indict, dict): for key, value in indict.items(): if isinstance(value, dict): for d in dict_generator(value, pre + [key]): yield d elif isinstance(value, list) or isinstance(value, tuple): for v in value: for d in dict_generator(v, pre + [key]): yield d else: yield str(pre) + " " + str([key, value]) + "\n" else: yield pre + [indict] yield str(pre) + " " + str([indict]) + "\n" def print_dict(v, prefix='',indent=''): if isinstance(v, dict): return [ print_dict(v2, "{}['{}']".format(prefix, k) + "
", indent+" " ) for k, v2 in v.items() ] elif isinstance(v, list): return [ print_dict( v2, "{}[{}]".format(prefix , i) + "
", indent+" ") for i, v2 in enumerate(v) ] else: return '{} = {}'.format(prefix, repr(v)) + "\n" def walk_file(): j = json.loads(open('cache/programs/programs_2.txt','r').read()) return print_dict(j) from flask import Flask from flask import request def tag(x,y): return "<%s>%s" % (x,y,x) def tagc(x,c,y): return '<%s class="%s">%s' % (x,c,y,x) def a(t,h): return '%s' % (h,t) def server_save(key,value): codecs.open('cache/server_data.txt','a').write( "%s=%s\n" % (str(key),str(value))) def flask_thread(q): app = Flask(__name__) @app.route("/") def home(): return tag('h1','This is my server.') + "
" + a('want to shut down?','/sd') @app.route("/save//") def s(key,val): server_save(key,val) return tag('h1','Saved.') + "
" + tag('p', 'Saved: %s = %s' % (str(key),str(val))) @app.route("/crazy") def hello(): r = '' r += tag('style', 'textarea { white-space:nowrap; }') r += tag('body', \ tagc('div','container-fluid', \ tagc('div','row', \ tagc( 'div', 'col-md-6', tag('pre', walk_file() ) ) + \ tagc( 'div', 'col-md-6', 'Column 2' + a('Shut Down','/shutdown' ) ) ) ) ) return r @app.route("/sd") def sd(): print('SIGINT or CTRL-C detected. Exiting gracefully') func = request.environ.get('werkzeug.server.shutdown') if func is None: raise RuntimeError('Not running with the Werkzeug Server') func() return "Server has shut down." app.run() from queue import Queue q = Queue() def serve(): import webbrowser import threading x = threading.Thread(target=flask_thread, args=(q,)) x.start() webbrowser.open_new_tab("http://localhost:5000") #s = open('cache/programs/index.json','w') #s.write( json.dumps({'departments':sorted(list(dept_index)), 'programs':prog_index}, indent=2) ) #s.close() """ ### courses.py ########## ########## CALCULATING SEMESTER STUFF ########## def summarize_proportion_online_classes(u): # u is a "group" from the groupby fxn #print u if NUM_ONLY: if ((1.0 * u.sum()) / u.size) > 0.85: return '2' if ((1.0 * u.sum()) / u.size) < 0.15: return '0' return '1' else: if ((1.0 * u.sum()) / u.size) > 0.85: return 'online-only' if ((1.0 * u.sum()) / u.size) < 0.15: return 'f2f-only' return 'mixed' def summarize_num_term_classes(u): # u is a "group" from the groupby fxn # term is sp18 now #print u return u.size # Prompt for course id, return list of user dicts. TODO this duplicates courses.py ?? def getUsersInCourse(id=0): # returns list if not id: id = str(input("The Course ID? ")) id = str(id) return fetch('/api/v1/courses/%s/users' % id, 0) #### curriculum.py def recur_look_for_leafs(item,indent=0,show=1): global leafcount, displaynames ii = indent * " " is_leaf = am_i_a_leaf(item) if type(item) == type({}): status = "" if show: status = "Dict" if is_leaf: leafcount += 1 status = "Leaf Dict" if status: print("\n%s%s" % (ii,status)) indent += 1 ii = indent * " " for K,V in list(item.items()): if show or is_leaf: print("%s%s:" % (ii, K), end="") if K =='displayName': displaynames.append(V) recur_look_for_leafs(V,indent+1,show or is_leaf) elif type(item) == type([]): status = "" if show: status = "List (" + str( len(item) ) + ")" if is_leaf: status = "Leaf List (" + str( len(item) ) + ")" if status: print("\n%s%s" % (ii,status)) indent += 1 ii = indent * " " for V in item: recur_look_for_leafs(V,indent+1, show or is_leaf) elif type(item) == type("abc"): if show: print("%s%s" % (' ', item)) elif type(item) == type(55): if show: print("%s%i" % (' ', item)) elif type(item) == type(5.5): if show: print("%s%f" % (' ', item)) elif type(item) == type(False): if show: print("%s%s" % (' ', str(item))) def am_i_a_leaf(item): if type(item) == type({}): for K,V in list(item.items()): if type(V) == type({}) or type(V) == type([]): return False elif type(item) == type([]): for V in item: if type(V) == type({}) or type(V) == type([]): return False elif type(item) == type("abc"): return True elif type(item) == type(55): return True elif type(item) == type(5.5): return True elif type(item) == type(False): if item == False: return True elif item == True: return True return True def sampleclass(): theclass = json.loads( codecs.open('cache/courses/samplecourse.json','r','utf-8').read() ) #print(json.dumps(theclass,indent=2)) recur_look_for_leafs(theclass) print(leafcount) print(sorted(displaynames)) def matchstyle(): theclass = json.loads( codecs.open('cache/courses/samplecourse.json','r','utf-8').read() ) print("\n".join(recur_matcher(theclass))) # 7: ['pattern matcher style', matchstyle], # 8: ['pattern matcher - test on all classes', match_style_test], ##### from localcache def user_role_and_online(): # cross list users, classes enrolled, and their roles global role_table, term_courses role_table = enrollment_file() user_table = users_file() user_table = user_table[ user_table['name']!="Test Student" ] term_table = term_file() current = term_table[lambda d: d.course_section=='2020 Spring'] # current semester from canvas term_id = current['id'].values[0] course_table = courses_file() # from canvas schedule = current_schedule() # from banner... term_courses = course_table[lambda d: d.termid==term_id] # courses this semester ... now add a crn column term_courses['crn'] = term_courses['code'].map( lambda x: get_crn_from_name(x) ) # add is_online flag (for courses listed in schedule as online-only) term_courses['is_online'] = term_courses['crn'].map( lambda x: course_is_online( x ) ) # kinda redundant ban_can = term_courses.merge(schedule,on='crn',how='left') #join the schedule from banner to the courses from canvas role_table = role_table.where(lambda x: x.workflow=='active') # this join limits to current semester if 'inner', or all semesters if 'left' courses_and_enrol = role_table.merge(ban_can,left_on='course_id',right_on='id', how='left') user_table = user_table.drop(columns="rootactid tz created vis school position gender locale public bd cc state".split(" ")) c_e_user = courses_and_enrol.merge(user_table,left_on='user_id',right_on='id',how='left') prop_online = pd.DataFrame(c_e_user.groupby(['user_id'])['is_online'].aggregate(summarize_proportion_online_classes).rename('proportion_online')) num_trm_crs = pd.DataFrame(c_e_user.groupby(['user_id'])['is_online'].aggregate(summarize_num_term_classes).rename('num_term_crs')) stu_tch_rol = pd.DataFrame(c_e_user.groupby(['user_id'])['type'].aggregate(summarize_student_teacher_role).rename('main_role')) user_table = user_table.merge(prop_online,left_on='id',right_index=True) user_table = user_table.merge(num_trm_crs,left_on='id',right_index=True) user_table = user_table.merge(stu_tch_rol,left_on='id',right_index=True) # remove name-less entries user_table = user_table.where(lambda x: (x.canvasid!='') ) # math.isnan(x.canvasid)) return user_table #print user_table.query('proportion_online=="online-only"') #print user_table.query('main_role=="teacher"') #user_table.to_csv('canvas_data/users_online.csv') """e_qry = "CREATE TABLE IF NOT EXISTS enrollments ( id integer PRIMARY KEY, name text NOT NULL, begin_date text, end_date text );""" """ ['CREATE INDEX "idx_req_userid" ON "requests" ("id","courseid","userid" );', 'CREATE INDEX "idx_users_id" ON "users" ("id","canvasid", );', 'CREATE INDEX "idx_term_id" ON "terms" ("id","canvasid" );', 'CREATE INDEX "idx_enrollment" ON "enrollment" ("cid","course_id","user_id" );', 'CREATE INDEX "idx_courses" ON "courses" ("id","canvasid","termid","code","name" );' ] took 6 seconds select * from users where name = "Peter Howell" select * from users join requests on users.id = requests.userid where name = "Peter Howell" 20k rows in 1.014 seconds!! with index above without: killed it after 120 seconds select timestamp, url, useragent, httpmethod, remoteip, controller from users join requests on users.id = requests.userid where name = "Peter Howell" order by requests.timestamp select courses.name, courses.code, terms.name, requests.url from courses join terms on courses.termid = terms.id join requests on courses.id = requests.courseid where terms.name='2020 Spring ' and courses.code='ACCT20 SP20 40039' order by courses.code """ def more_unused_xreferencing(): """continue for line in lines: r = requests_line(line.decode('utf-8'),filei) if filei < 5: print(r) else: break filei += 1 by_date_course = defaultdict( lambda: defaultdict(int) ) by_date_user = defaultdict( lambda: defaultdict(int) ) df_list = [] df_list_crs = [] users = defaultdict( lambda: defaultdict(int) ) #by_user = {} #by_course = {} i = 0 limit = 300 #print(r) date = dt.strptime( r['timestamp'], "%Y-%m-%d %H:%M:%S.%f" ) if r['userid'] in users: users[r['userid']]['freq'] += 1 if users[r['userid']]['lastseen'] < date: users[r['userid']]['lastseen'] = date else: users[r['userid']] = {"id":r['userid'], "lastseen":date, "freq":1} by_date_course[ r['day'] ][ r['courseid'] ] += 1 by_date_user[ r['day'] ][ r['userid'] ] += 1 #if r['userid'] in by_user: by_user[r['userid']] += 1 #else: by_user[r['userid']] = 1 #if r['courseid'] in by_course: by_course[r['courseid']] += 1 #else: by_course[r['courseid']] = 1 #mylog.write("by_user = " + str(by_user)) df_list.append(pd.DataFrame(data=by_date_user)) df_list_crs.append(pd.DataFrame(data=by_date_course)) i += 1 if i > limit: break #mylog.write("by_date_course = ") result = pd.concat(df_list, axis=1,join='outer') result_crs = pd.concat(df_list_crs, axis=1,join='outer') #print result_crs mylog.write(result.to_csv()) # get users usersf = user_role_and_online() merged = pd.merge(result,usersf,left_index=True,right_on='id', how='left') #dropkeys = "rootactid tz created vis school position gender locale public bd cc state".split(" ") #merged.drop(dropkeys, inplace=True, axis=1) mglog = open(local_data_folder+'userlogs.csv','w') mglog.write(merged.to_csv()) # get courses courses = courses_file() merged2 = pd.merge(result_crs,courses,left_index=True,right_on='id', how='left') dropkeys = "rootactid wikiid".split(" ") merged2.drop(dropkeys, inplace=True, axis=1) mglogc = open(local_data_folder + 'courselogs.csv','w') mglogc.write(merged2.to_csv()) # a users / freq / lastseen file ufl = open(local_data_folder + "user_freq.json","w") today = datetime.datetime.today() for U in list(users.keys()): date = users[U]['lastseen'] users[U]['lastseen'] = date.strftime("%Y-%m-%d") diff = today - date users[U]['daysago'] = str(diff.days) users[U]['hoursago'] = str(int(diff.total_seconds()/3600)) us_frame = pd.DataFrame.from_dict(users,orient='index') us_with_names = pd.merge(us_frame,usersf,left_index=True,right_on='id', how='left') #dropkeys = "id id_x id_y globalid rootactid tz created vis school position gender locale public bd cc state".split(" ") #us_with_names.drop(dropkeys, inplace=True, axis=1) print(us_with_names) ufl.write( json.dumps(users, indent=4) ) ufl.close() mglogd = open('canvas_data/user_freq.csv','w') mglogd.write(us_with_names.to_csv()) """ """ -- projects table CREATE TABLE IF NOT EXISTS projects ( id integer PRIMARY KEY, name text NOT NULL, begin_date text, end_date text ); """ pass def users_p_file(): uf = users_file() pf = pseudonym_file() #print pf upf = uf.merge(pf,left_on='id',right_on='user_id',how='left') return upf """ def com_channel_dim(): all = os.listdir(local_data_folder) all.sort(key=lambda x: os.stat(os.path.join(local_data_folder,x)).st_mtime) all.reverse() #print "sorted file list:" #print all for F in all: if re.search('communication_channel_dim',F): cc_file = F break print("most recent communication channel file is " + cc_file) cc_users = [] for line in gzip.open(local_data_folder + cc_file,'r'): line_dict = dict(list(zip(cc_format, line.split("\t")))) #line_dict['globalid'] = line_dict['globalid'].rstrip() cc_users.append(line_dict) df = pd.DataFrame(cc_users) return df """ """grp_sum_qry = ""SELECT u.sortablename, r.timeblock, SUM(r.viewcount), u.canvasid AS user, c.canvasid AS course FROM requests_sum1 AS r JOIN courses AS c ON e.course_id=c.id JOIN enrollment as e ON r.courseid=c.id JOIN users AS u ON u.id=e.user_id WHERE c.canvasid=%s AND e."type"="StudentEnrollment" GROUP BY u.id,c.id,r.timeblock ORDER BY u.sortablename DESC, r.timeblock"" % course_id q = ""SELECT u.sortablename, r.timeblock, r.viewcount, u.canvasid AS user, c.canvasid AS course FROM requests_sum1 AS r JOIN courses AS c ON e.course_id=c.id JOIN enrollment as e ON r.courseid=c.id JOIN users AS u ON u.id=e.user_id WHERE c.canvasid=%s AND e."type"="StudentEnrollment" AND u.canvasid=810 ORDER BY u.sortablename DESC, r.timeblock"" % course_id q = ""SELECT u.sortablename, r.timeblock, r.viewcount, u.canvasid AS user, c.canvasid AS course FROM enrollment as e JOIN courses AS c ON e.course_id=c.id JOIN requests_sum1 AS r ON r.courseid=c.id JOIN users AS u ON u.id=e.user_id WHERE c.canvasid=%s AND e."type"="StudentEnrollment" ORDER BY u.sortablename, r.timeblock"" % course_id""" stem_course_id = '11015' # TODO # NO LONGER USED - SEE COURSES def enroll_stem_students(): depts = "MATH BIO CHEM PHYS ASTR GEOG".split(" ") students = set() for d in depts: students.update(dept_classes(d)) print(students) to_enroll = [ x for x in students if x not in already_enrolled ] print(to_enroll) print("prev line is people to enroll\nnext line is students already enrolled in stem") print(already_enrolled) for s in to_enroll: t = url + '/api/v1/courses/%s/enrollments' % stem_course_id data = { 'enrollment[user_id]': s[1], 'enrollment[type]':'StudentEnrollment', 'enrollment[enrollment_state]': 'active' } print(data) print(t) if input('enter to enroll %s or q to quit: ' % s[0]) == 'q': break r3 = requests.post(t, headers=header, params=data) print(r3.text) ##### ##### from users.py pretty much just use sql now # unused? def getAllTeachersInTerm(): # a list # classes taught in last 3 semesters # How many of them were published and used # hits in last week/month/year # most common department # email addr all_courses = {} teachers = {} # keyed by goo # { 'name':'', 'id':'', 'email':'', 'goo':'', 'classes':[ (#name,#id,#pubd,#hitsbyteacher) ... ] } # This is a bit different from the 1 year schedule above, because it looks at # people who were active in their shells in iLearn. outfile = codecs.open('teacherdata/historical_shells_used.json','w', encoding='utf-8') for term in last_4_semesters_ids: # [60,]: print(("Fetching term: " + str(term))) all_courses[term] = \ fetch('/api/v1/accounts/1/courses?enrollment_term_id=' + str(term) + '&perpage=100') i = 0 j = 0 for k,v in list(all_courses.items()): ##### term k, list v for a_class in v: print((a_class['name'])) published = 0 if a_class['workflow_state'] in ['available','completed']: j += 1 published = 1 i += 1 #if i > 20: break tch = fetch('/api/v1/courses/' + str(a_class['id']) + '/search_users?enrollment_type=teacher') for r in tch: ##### TEACHER r of COURSE a_class name = str(r['sortable_name']) if not 'sis_import_id' in r: print("This user wasn't available: " + name) continue goo = str(r['sis_import_id']) print((r['sortable_name'])) if not name in teachers: email = getEmail(r['id']) teachers[name] = { 'name':r['sortable_name'], 'id':r['id'], 'email':email, 'goo':goo, 'classes':[] } info = (a_class['name'],a_class['id'],published) teachers[name]['classes'].append( info ) ## TODO: hits in courses by teachers https://gavilan.instructure.com:443/api/v1/users/2/page_views?end_time=Dec%2010%2C%202018 for t,v in list(teachers.items()): teachers[t]['num_courses'] = len(v['classes']) teachers[t]['num_active_courses'] = sum( [x[2] for x in v['classes']] ) depts = [ dept_from_name(x[0]) for x in v['classes'] ] teachers[t]['dept'] = most_common_item(depts) #print(str(j), "/", str(i), " sections are published") outfile.write(json.dumps(teachers)) """ def teacherActivityLog(uid=1): ### Next: save results in a hash and return that.... global results, users, users_by_id #get_users() # do this if you think 'teachers/users.json' is outdated. load_users() #for x in users_by_id.keys(): # if x < 20: # print x # print users_by_id[x] teachers = csv.reader(open('teachers/current_semester.txt','r'), delimiter="\t") for row in teachers: print(row[0] + " is id: " + row[1]) uid = row[1] print("Comes up as: " + str(users_by_id[int(uid)])) info = users_by_id[int(uid)] goo = info['login_id'] output_file = open('logs/users/byweek/'+ goo.lower() + '.csv', 'w') # okay, actually, the first week here is the week before school IRL start = isoweek.Week.withdate( datetime.date(2017,8,21)) end = isoweek.Week.thisweek() byweek = [] i = 0 while(1): results = [] start = start + 1 if start > end: break myStart = start.day(0).isoformat() + 'T00:00-0700' myEnd = start.day(6).isoformat() + 'T11:59:59-0700' t = url + "/api/v1/users/" + str(uid) + "/page_views?start_time=" + myStart + '&end_time=' + myEnd + "&perpage=500" print(t) while(t): print(".", end=' ') t = fetch(t) print("") thisWeek = len(results) print("Week # " + str(i) + "\t" + str(thisWeek)) byweek.append( "Week # " + str(i) + "\t" + str(thisWeek) ) output_file.write( start.isoformat() + "," + str(thisWeek) + "\n") i += 1 for j in byweek: print(j) """ """ def summarize_student_teacher_role(u): # u is a "group" from the groupby fxn # term is sp18 now t = 0 s = 0 for a in u: if a=='TeacherEnrollment': t += 1 else: s += 1 if NUM_ONLY: if t > s: return 'teacher' return 'student' else: if t > s: return '1' return '0' """ """ def user_roles2(): # cross list users, classes enrolled, and their roles global role_table, term_courses role_table = enrollment_file() user_table = users_file() course_table = courses_file() # from canvas term_table = term_file() schedule = current_schedule() # from banner # current semester current = term_table[lambda d: d.course_section=='2018 Spring'] term_id = current['id'].values[0] term_courses = course_table[lambda d: d.termid==term_id] # courses this semester # add is_online flag (for courses listed in schedule as online-only) term_courses['is_online'] = term_courses['code'].map( lambda x: course_is_online( get_crn_from_name(x) ) ) new_df = pd.DataFrame(columns=['type','oo','num']) m = 0 data = [] for u in user_table.iterrows(): if m % 1000 == 0: print("on row " + str(m)) m += 1 data.append(categorize_user(u)) #if m > 1500: break new_df = pd.DataFrame(data,columns=['i','type','onlineonly','numcls']).set_index('i') print(new_df) user_table = user_table.merge(new_df,left_index=True,right_index=True) user_table.to_csv('canvas_data/users_online.csv') """ ### IS THIS IN CANVAS_DATA.py? """ Collate the raw logs into something more compact and useful. Version 1: - # of accesses, user/day - # of participations, user/day - - where day is the number of days into the semester. Classes shorter than 16 weeks should get a multiplier - - 2 initial goals: a. data for statistics / clustering / regression / learning b. data for visualization """ def req_to_db(fname_list): fields = ','.join("id timestamp timestamp_year timestamp_month timestamp_day user_id course_id root_account_id course_account_id quiz_id discussion_id conversation_id assignment_id url user_agent http_method remote_ip interaction_micros web_application_controller web_applicaiton_action web_application_context_type web_application_context_id real_user_id session_id user_agent_id http_status http_version".split(" ")) sqlite_file = 'canvas_data/data.db' conn = sqlite3.connect(sqlite_file) c = conn.cursor() # merge all requests into db by_date_course = defaultdict( lambda: defaultdict(int) ) by_date_user = defaultdict( lambda: defaultdict(int) ) df_list = [] df_list_crs = [] users = defaultdict( lambda: defaultdict(int) ) i = 0 limit = 300 for fname in fname_list: print((fname+"\n")) for line in gzip.open('canvas_data/'+fname,'r'): r = line.split('\t') #tot = len(fields.split(',')) #i = 0 #for x in fields.split(','): # print x + "\t" + r[i] # i+= 1 qry = "insert into requests("+fields+") values (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)" conn.execute(qry, r) # New method for below: # read collated data from sqlite # collate from more logs # write back....? """ date = datetime.datetime.strptime( r['timestamp'], "%Y-%m-%d %H:%M:%S.%f" ) if r['userid'] in users: users[r['userid']]['freq'] += 1 if users[r['userid']]['lastseen'] < date: users[r['userid']]['lastseen'] = date else: users[r['userid']] = {"id":r['userid'], "lastseen":date, "freq":1} by_date_course[ r['day'] ][ r['courseid'] ] += 1 by_date_user[ r['day'] ][ r['userid'] ] += 1 #if r['userid'] in by_user: by_user[r['userid']] += 1 #else: by_user[r['userid']] = 1 #if r['courseid'] in by_course: by_course[r['courseid']] += 1 #else: by_course[r['courseid']] = 1 #mylog.write("by_user = " + str(by_user)) df_list.append(pd.DataFrame(data=by_date_user)) df_list_crs.append(pd.DataFrame(data=by_date_course)) """ i += 1 if i > limit: break conn.commit() conn.close() """ Making columns: table_data = [['a', 'b', 'c'], ['aaaaaaaaaa', 'b', 'c'], ['a', 'bbbbbbbbbb', 'c']] for row in table_data: print("{: >20} {: >20} {: >20}".format(*row)) Transpose a matrix: rez = [[m[j][i] for j in range(len(m))] for i in range(len(m[0]))] """ """ ilearn_by_id = {} ilearn_by_name = {} for x in ilearn_list: ilearn_by_id[x[3]] = x ilearn_by_name[x[0]] = x for ml in open('cache/teacher_manual_name_lookup.csv','r').readlines(): parts = ml.strip().split(',') try: manual_list[parts[0]] = ilearn_by_id[parts[1]] except Exception as e: print "Teacher missing: " + parts[0] il_names = [ x[0] for x in ilearn_list ] il_byname = {} for x in ilearn_list: il_byname[x[0]] = x sched_list_missed = [x for x in sched_list] # # key is long name (with middle name) from schedule, value is tuple with everything name_lookup = manual_list matches = [] #print ilearn_list num_in_sched = len(sched_list) num_in_ilearn = len(ilearn_list) #for i in range(min(num_in_sched,num_in_ilearn)): # print "|"+sched_list[i] + "|\t\t|" + ilearn_list[i][0] + "|" print("Sched names: %i, iLearn names: %i" % (num_in_sched,num_in_ilearn)) for s in sched_list: for t in il_names: if first_last(s) == t: #print ' MATCHED ' + s + ' to ' + t sched_list_missed.remove(s) try: name_lookup[s] = ilearn_by_name[ first_last(s) ] except Exception as e: print "Teacher missing (2): " + s il_names.remove(first_last(s)) matches.append(s) print "Matched: " + str(matches) print "\nDidn't match: " + str(len(sched_list_missed)) + " schedule names." print "\nFinal results: " print name_lookup nlf = codecs.open('cache/sched_to_ilearn_names.json','w','utf-8') nlf.write(json.dumps(name_lookup,indent=2)) # STRING DISTANCE #sim = find_most_similar(s,i_names) #print ' CLOSEST MATCHES to ' + s + ' are: ' + str(sim) #mm.write(s+',\n') """ #ilearn_list = sorted(list(set(map( # lambda x: #(tfi[x]['name'],tfi[x]['email'],tfi[x]['dept'],str(tfi[x]['id']),tfi[x]['goo']), # tfi.keys())))) #i_names = [ x[0] for x in ilearn_list ] #print json.dumps(i_names,indent=2) #return # how to filter a dict based on values # filtered = {k: v for k, v in course_combos.items() if v['dept'] == 'LIB' or v['dept'] == 'CSIS' } # more pandas # gapminder['continent'].unique() #for name,group in bycode: # #print name # print name, " ", group['type'] #onl = gg.agg( lambda x: has_online(x) ) #ttl = gg.agg( lambda x: len(x) ) #ttl = ttl.rename(columns={'type':'total_sections'}) #onl.join(gg.agg( lambda x: has_hybrid(x) ),how='outer') #onl.join(gg.agg( lambda x: has_lecture(x) ), how='outer') #onl['num_sections'] = 0 #onl['num_lec'] = 0 #onl['num_online'] = 0 #all = pd.merge([onl,hyb,lec]) #print onl #total=len, f2f=lambda x: ) set(x) #{ 'num_sections': "count", # 'num_lec': lambda x: 5, # 'num_online': lambda x: 5 } ) #print gg """ def has_online(series): # if any items of the series have the string 'online', return 1 for i in series: if i == 'online': return 1 return 0 def has_lecture(series): # if any items of the series have the string 'online', return 1 for i in series: if i == 'online': return 1 return 0 def has_hybrid(series): # if any items of the series have the string 'online', return 1 for i in series: if i == 'hybrid': return 1 return 0 """ #### RIGHT HERE IS WHERE I THINK... MAYBE THIS ISN'T THE RIGHT APPROACH. I DON'T SEEM #### TO BE ABLE TO QUERY THE FACT BASE. IS THAT TRUE? SHOULD I JUST BE USING TABLES? #### CHANGING COURSE... USE THE RULES TO UPDATE A DATABASE/TABLE/DATAFRAME #### OR SET OF DICTS. # ultimately i want this to be more flexible, so i can categorize degrees as 'available evening' etc # # Simple data structure. In this function, a degree is """ degree = { 'name': 'History AA', 'blocks': [ { 'original_title':'xxx', 'rulecode':'u3', 'courses': [ {'code':'math1a', 'units': '3.0', 'wasonline':False }, {'code':'math2a', 'units': '3.0', 'wasonline':False }, {'code':'math3a', 'units': '3.0', 'wasonline':False } ] }, { 'original_title':'xyz', 'rulecode':'a', 'courses': [ {'code':'math5a', 'units': '3.0', 'wasonline':False }, {'code':'math6a', 'units': '3.0', 'wasonline':False }, {'code':'math7a', 'units': '3.0', 'wasonline':False } ] } ] } """ # Wrapper to get 2 schedules at once def dl_sched(): global SEMESTER, semester_begin, filename, short_sem SEMESTER = 'Fall 2019' short_sem = 'fa19' semester_begin = strptime('08/26', '%m/%d') filename = 'fa19_sched.json' txt = login() codecs.open('output/'+filename,'w').write( json.dumps( to_section_list(txt) ) ) #stats() #reg_nums() #todo: these semesters SEMESTER = 'Summer 2019' short_sem = 'su19' semester_begin = strptime('06/17', '%m/%d') filename = 'su19_sched.json' txt = login() codecs.open('output/'+filename,'w').write( json.dumps( to_section_list(txt) ) ) #stats() #reg_nums() # Send a personalized email regarding ZTC def send_z_email(fullname, firstname, addr, courses_list): FULLNAME = fullname #"Sabrina Lawrence" FNAME = firstname # "Sabrina" to_email = addr # "slawrence@gavilan.edu" courses = courses_list # ["CSIS45", "CSIS85"] course_template = "%s    " url_template = "https://docs.google.com/forms/d/e/1FAIpQLSfZLQp6wHFEdqsmpZ7jz2Y8HtKLo8XTAhrE2fyvTDOEgquBDQ/viewform?usp=pp_url&entry.783353363=%s&entry.1130271051=%s" # % (FULLNAME, COURSE1) bare_link = "https://forms.gle/pwZJHdWSkyvmH4L19" COURSELINKS = '' PLAINCOURSES = '' for C in courses: ut = url_template % (FULLNAME, C) COURSELINKS += course_template % (ut, C) PLAINCOURSES += C + " " text_version = open('cache/ztc_mail1.txt','r').read() html_version = open('cache/ztc_mail1_h.txt','r').read() # replace these: $FNAME $COURSELINKS $LINK email = re.sub( r'\$FNAME', FNAME, text_version ) email = re.sub( r'\$COURSELINKS', PLAINCOURSES, email ) email = re.sub( r'\$LINK', bare_link, email ) email_h = re.sub( r'\$FNAME', FNAME, html_version ) email_h = re.sub( r'\$COURSELINKS', COURSELINKS, email_h ) print(email_h+"\n\n"+email) from O365 import Account credentials = ('phowell@gavilan.edu', 'xxx') client_secret = 'xxx' # expires 10/28/2020 tenant_id = "4ad609c3-9156-4b89-9496-0c0600aeb0bb" # application client id: 29859402-fa55-4646-b717-752d90c61cde account = Account(credentials, auth_flow_type='credentials', tenant_id=tenant_id) if account.authenticate(): print('Authenticated!') #account = Account(credentials) #if account.authenticate(scopes=['message_all']): # print('Authenticated!') m = account.new_message() m.to.add(addr) m.subject = 'Quick question about your course textbook' m.body = "email_h" m.send() """ import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText msg = MIMEMultipart('alternative') msg['Subject'] = "Quick question about your course textbook" msg['From'] = "gavdisted@gmail.com" msg['To'] = to_email msg.attach(MIMEText(email, 'plain')) msg.attach(MIMEText(email_h, 'html')) #s = smtplib.SMTP('smtp.gmail.com', 587) #s.starttls() #s.login("gavdisted", "xxx") s = smtplib.SMTP_SSL('smtp.office365.com',587) s.ehlo() s.starttls() s.login('phowell@gavilan.edu', 'xxx') #s.sendmail(msg['From'], msg['To'], msg.as_string()) s.sendmail(msg['From'], msg['To'], "Testing") s.quit()""" def getInactiveTeachersInTerm(t=23): # a list global results teachers = {} emails = {} outfile = codecs.open('canvas/inactive_teachers.txt','w', encoding='utf-8') efile = codecs.open('canvas/inactive_teachers_emails.txt','w', encoding='utf-8') #yn = raw_input('All courses? y=all n=only active ') #all = 0 #if yn=='y': all = 1 if not t: t = askForTerms() else: t = [ t, ] for term in t: r = url + '/api/v1/accounts/1/courses?enrollment_term_id=' + str(term) + '&perpage=100' while(r): r = fetch(r) all_courses = results #json.loads(results) #print "All unpublished courses: " i = 0 j = 0 for k in all_courses: j += 1 if k['workflow_state'] != 'available': i += 1 print(str(i), "\t", k['name'], "\t", k['workflow_state']) results = [] t2 = url + '/api/v1/courses/' + str(k['id']) + '/search_users?enrollment_type=teacher' while(t2): t2 = fetch(t2) #print results for r in results: key = r['sortable_name'] + "\t" + str(r['id']) #if not 'email' in r: pdb.set_trace() emails[key] = str(r['sis_user_id']) #print r if key in teachers: teachers[key].append(k['name']) else: teachers[key] = [ k['name'], ] #print json.dumps(results, indent=4, sort_keys=True) #a = raw_input() print(str(i), "/", str(j), " sections are unpublished") for t in list(emails.keys()): efile.write(emails[t] + ", ") for t in list(teachers.keys()): outfile.write(t + "\t") for c in teachers[t]: outfile.write(c + ",") outfile.write("\n") #f.write(json.dumps(teachers, indent=4, sort_keys=True)) print("Output file is in ./teachers/current_semester.txt") #print json.dumps(all_courses, indent=4, sort_keys=True) """for x in all_courses: qry = '/api/v1/courses/' + str(course_id) + '/search_users?enrollment_type=teacher' t = url + qry while(t): t = fetch(t) """ #for t,v in teachers.items(): # outfile.write( "|".join( [ v['goo'], v['name'], v['email'], v['dept'], str(v['num_courses']), str(v['num_active_courses']) ] ) + "\n" ) #{"goo": "G00275722", "name": "Agaliotis, Paul", "num_courses": 1, "num_active_courses": 1, "id": 5092, "dept": "AMT", "classes": [["AMT120 POWERPLANT TECH FA18 10958", 5322, 1]], "email": "PAgaliotis@gavilan.edu"}, #for t in teachers.keys(): # outfile.write(t + "\t") # for c in teachers[t]: # outfile.write(c + ",") # outfile.write("\n") #f.write(json.dumps(teachers, indent=4, sort_keys=True)) #print "Output file is in ./teachers/current_semester.txt" #print json.dumps(all_courses, indent=4, sort_keys=True) """for x in all_courses: qry = '/api/v1/courses/' + str(course_id) + '/search_users?enrollment_type=teacher' t = url + qry while(t): t = fetch(t) """ def course_location(course): if len(course[0]) > 13: period = Set( [course_location_raw(course[0][13])], ) else: period = Set() if len(course) > 1: period.add(course_location_raw(course[1][13])) if len(course) > 2: period.add(course_location_raw(course[2][13])) if len(course) > 3: period.add(course_location_raw(course[3][13])) if len(course) > 4: period.add(course_location_raw(course[4][13])) if len(course) > 5: period.add(course_location_raw(course[5][13])) if 'TBA' in period: period.remove('TBA') period = list(period) if len(period)==0: return '' if len(period)==1: return period[0] if len(period)==2 and 'Online' in period: period.remove('Online') return 'Hybrid at ' + period[0] return '/'.join(period) def course_time(course): # is it morning, mid, or evening? period = Set( [raw_course_time(course[0][7])], ) if len(course) > 1: #time += ", " + course[1][7] period.add(raw_course_time(course[1][7])) if len(course) > 2: #time += ", " + course[2][7] period.add(raw_course_time(course[2][7])) if len(course) > 3: #time += ", " + course[3][7] period.add(raw_course_time(course[3][7])) if len(course) > 4: #time += ", " + course[4][7] period.add(raw_course_time(course[4][7])) if len(course) > 5: #time += ", " + course[5][7] period.add(raw_course_time(course[5][7])) #print raw_course_time(course[0][7]), if 'TBA' in period: period.remove('TBA') period = list(period) if len(period)==0: return '' if len(period)==1: return period[0] return '/'.join(period) def course_teacher(course): t = Set() for c in course: t.add(c[11]) return " / ".join(list(t)) def reg_nums(): courses = [] dates = [] sections = categorize() today = todays_date_filename() out = open(today+'.csv','w') dates = {'loc':{}, 'time':{}, 'start':{}, 'teacher':{}} i = 1 for f in os.listdir('.'): m = re.search('reg_'+short_sem+'_(\d+)\.csv',f) if m: filein = open(f,'r').readlines()[1:] d = m.group(1) dates[d] = {} for L in filein: parts = L.split(',') # crn,code,sec,cmp,cred,name,days,time,cap,act,rem,teacher,date,loc if not re.search('(\d+)',parts[0]): continue if len(parts)<8: continue if not parts[8]: continue if float(parts[8])==0: continue dates[d][parts[0] + " " + parts[1]] = (1.0* float(parts[9])) / float(parts[8]) if i == 1 and parts[0] in sections: dates['loc'][parts[0] + " " + parts[1]] = course_location( sections[parts[0]] ) dates['time'][parts[0] + " " + parts[1]] = course_time(sections[parts[0]] ) dates['start'][parts[0] + " " + parts[1]] = course_start( sections[parts[0]] ) dates['teacher'][parts[0] + " " + parts[1]] = course_teacher( sections[parts[0]] ) #dates[d]['act'] = parts[9] #dates[d]['nam'] = parts[5] #dates[d]['onl'] = '' #print parts #if len(parts)>13 and parts[13]=='ONLINE': dates[d]['onl'] = 'online' i += 1 """for d in sorted(dates.keys()): for c in d: print d print dates[d]['crs']""" df = pd.DataFrame(dates) df.to_csv(out) # In the schedule, is this a class or a continuation of the class above? def categorize(): # todo: must we open all these files? dates = {} files = sorted(os.listdir('.')) files = list( filter( lambda x: re.search('reg(\d+)\.csv',x), files) ) files.reverse() f = files[0] filein = codecs.open(f,'r','utf-8').readlines()[1:] sections = {} this_section = [] for L in filein: parts = L.strip().split(',') # crn,code,sec,cmp,cred,name,days,time,cap,act,rem,teacher,date,loc parts = list( map( lambda x: clean_funny3(x), parts ) ) if not re.search('(\d+)',parts[0]): # This is a continuation this_section.append(parts) else: # this is a new section or the first line if this_section: sections[ this_section[0][0] ] = this_section #print "Section: " + this_section[0][0] + " is: " + str(this_section) + "\n" #print this_section[0][0] + "\t", course_start(this_section) #print this_section[0][0] + "\t", course_time(this_section) #print this_section[0][0] + "\t", course_location(this_section) this_section = [ parts, ] return sections # Deprecated. call perl. def constructSchedule(): term = raw_input("Name of html file? (ex: sp18.html) ") os.chdir('make-web-sched') cmd = 'perl make.pl ' + term print "command: " + cmd os.system(cmd) """ def fetch_dict(target,params={}): # if there are more results, return the url for more fetching. # else return false #print target global results_dict r2 = requests.get(target, headers = header, params=params) output = r2.text if output.startswith('while('): output = output[9:] #print output mycopy = results_dict.copy() results_dict = {} results_dict.update(json.loads(output)) results_dict.update(mycopy) f.write(json.dumps(results_dict, indent=2)) #print "\n" if ('link' in r2.headers): links = r2.headers['link'].split(',') for L in links: ll = L.split(';') link = ll[0].replace("<","") link = link.replace(">","") if re.search(r'next', ll[1]): #print ll[1] + ":\t" + link return link return "" """ def get_schedule(term='201870', sem='fall'): """ sched_data = { 'term_in':term, 'sel_subj':'dummy', 'sel_day':'dummy', 'sel_schd':'dummy', 'sel_insm':'dummy', 'sel_camp':'dummy', 'sel_levl':'dummy', 'sel_sess':'dummy', 'sel_instr':'dummy', 'sel_ptrm':'dummy', 'sel_attr':'dummy', 'sel_subj':'%', 'sel_crse':'', 'sel_title':'', 'sel_schd':'%', 'sel_from_cred':'', 'sel_to_cred':'', 'sel_camp':'%', 'sel_ptrm':'%', 'sel_sess':'%', 'sel_attr':'%', 'begin_hh':'0', 'begin_mi':'0', 'begin_ap':'a', 'end_hh':'0', 'end_mi':'0', 'end_ap':'a' } initial_headers = {'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Encoding':'gzip, deflate, sdch, br', 'Accept-Language':'en-US,en;q=0.8', 'Connection':'keep-alive', 'Host':'ssb.gavilan.edu', 'Upgrade-Insecure-Requests':'1', } #'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36' } headers = { 'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Encoding':'gzip, deflate, br', 'Accept-Language':'en-US,en;q=0.8', 'Cache-Control':'max-age=0', 'Connection':'keep-alive', 'Content-Type':'application/x-www-form-urlencoded', 'Host':'ssb.gavilan.edu', 'Origin':'https://ssb.gavilan.edu', 'Referer':'https://ssb.gavilan.edu/prod/bwckgens.p_proc_term_date?p_calling_proc=bwckschd.p_disp_dyn_sched&p_term='+term, 'Upgrade-Insecure-Requests':'1', } #'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36' } initial_url = 'https://ssb.gavilan.edu/prod/bwckgens.p_proc_term_date?p_calling_proc=bwckschd.p_disp_dyn_sched&p_term=' + term sesh = requests.Session() #r1 = sesh.get(initial_url,headers=initial_headers) #sesh.headers.update(headers) url = 'https://ssb.gavilan.edu/prod/bwckschd.p_get_crse_unsec' r1 = sesh.get(initial_url) r = sesh.post(url, data=sched_data) print r.headers data = r.text out = open('data/temp/'+term+'.html','w') out.write(data) out.close()""" os.system('perl parse_schedule.pl data/temp/' + term + '.html' + ' ' + sem) ##### ##### ##### conf.py ? str="""355 985 1296 354 730 1295 353 319 1290 352 985 1289 351 813 1285 350 281 1285 349 267 1279 348 981 1252 347 994 1252 346 26 1250 345 757 1288 344 368 1288 343 1 1286 259 703 1295 256 693 1293 255 660 1292 254 1 1291 250 482 1287 246 2 1284 245 333 1283 244 27 1282 243 703 1281 242 730 1281 241 482 1280 239 211 1278 238 794 1278 237 2 1277 236 297 1276 235 831 1276 233 482 1251""" for L in str.split("\n"): (id,host,session) = L.split("\t") qry = "INSERT INTO conf_signups (user,session,timestamp) VALUES (%s,%s,'2022-08-08 17:20:00');" % (host,session) print(qry) ## sched.py import requests, re, csv, json, funcy, sys def dates(s): #print(s) m = re.match(r'(\d\d\d\d)\-(\d\d)\-(\d\d)',s) if m: s = m.group(2) + "/" + m.group(3) #print(s) return s # "Course Code","Start Date","End Date",Term,Delivery,CRN,Status,"Course Name","Course Description","Units/Credit hours","Instructor Last Name","Instructor First Name",Campus/College,"Meeting Days and Times","Pass/No Pass available?","Class Capacity","Available Seats","Waitlist Capacity","Current Waitlist Length","Meeting Locations","Course Notes",ZTC # ACCT103,2021-06-14,2021-07-23,"Summer 2021",Online,80386,Active,"General Office Accounting","This course is designed to prepare students for entry-level office accounting positions. Emphasis is on practical accounting applications. This course has the option of a letter grade or pass/no pass. ADVISORY: Eligible for Mathematics 430."," 3.00","Valenzuela Roque",Karla,"Gavilan College"," ",T," 30"," 18"," 20"," 0",,, def parse_www_csv_sched(): old_keys = [ "CRN","Course Code","Units/Credit hours","Course Name","Meeting Days and Times","Class Capacity","Available Seats","Waitlist Capacity","Current Waitlist Length","Instructor Last Name","Start Date","Meeting Locations","ZTC","Delivery","Campus/College","Status","Course Description","Pass/No Pass available?","Course Notes" ] # "Instructor First Name","End Date","Term", new_keys = [ "crn", "code","cred", "name", "days", "cap", "rem", "wl_cap", "wl_act", "teacher", "date", "loc", "ztc", "type", "site","status","desc","pnp","note" ] # "time","act","wl_rem", "partofday", url = "https://gavilan.edu/_files/php/current_schedule.csv" sched_txt = requests.get(url).text.splitlines() sched = {"Fall 2021":[], "Spring 2022":[], "Winter 2022":[], "Summer 2021":[]} shortsems = {"Fall 2021":"fa21", "Spring 2022":"sp22", "Winter 2022":"wi22", "Summer 2021":"su21","Summer 2022":"su22","Fall 2022":"fa22"} for row in csv.DictReader(sched_txt): d = dict(row) for (old_key,new_key) in zip(old_keys,new_keys): d[new_key] = d.pop(old_key).strip() d['teacher'] = d.pop('Instructor First Name').strip() + " " + d['teacher'] d['date'] = dates(d['date']) + '-' + dates(d.pop('End Date').strip()) d['term'] = shortsems[d.pop('Term')] if d['cred'] == ".00": d['cred'] = "0" if d['type'] == "Online": d["loc"] = "ONLINE" d["site"] = "Online" d["type"] = "online" #d.pop('Instructor First Name').strip() + " " + d['teacher'] #d["code"] = d.pop("Course Code") #d["crn"] = d.pop("CRN") sched[row['Term']].append(d) #print(row) print( json.dumps(sched,indent=2)) for k,v in sched.items(): print("%s: %i" % (k,len(v))) for v in sched["Fall 2021"]: print("%s\t %s\t %s\t %s" % ( v['code'], v['days'], v['type'], v['loc'] )) #print("%s\t %s\t %s\t %s" % ( v['Course Code'], v['Meeting Days and Times'], v['Delivery'], v['Meeting Locations'] )) def parse_json_test_sched(): j2 = open('cache/classes_json.json','r').readlines() for L in j2: o3 = json.loads(L) print(json.dumps(o3,indent=2)) if __name__ == "__main__": print ('') options = { 1: ['fetch and parse the csv on www.', parse_www_csv_sched], 2: ['parse the test json file.', parse_json_test_sched ], } if len(sys.argv) > 1 and re.search(r'^\d+',sys.argv[1]): resp = int(sys.argv[1]) print("\n\nPerforming: %s\n\n" % options[resp][0]) else: print ('') for key in options: print(str(key) + '.\t' + options[key][0]) print('') resp = input('Choose: ') # Call the function in the options dict options[ int(resp)][1]()