### ### ### Text / Knowledge Base ### ### How about downloading all possible info / webpages / sources ### related to Gavilan and creating a master search index? ### ### Goals: ### - Scripted approach to allow re-indexing / updating ### - Break everything down into paragraphs ### ### - Script to extract keywords, topics, entities, summaries, questions answered ### from each paragraph or chunk. ### - Use spacy, gensim, nltk, or gpt-3, or a combination of all of them ### ### - Create vector / embeddings for each paragraph ### ### - Enable a vector search engine and connect to front page of gavilan.cc ### - Use that to feed handful of source paragraphs (& prompt) into gpt and ### receive text answers to questions. import re, os, codecs, requests, trafilatura, pickle, pypandoc from collections import defaultdict from pdfminer.high_level import extract_text from sentence_transformers import SentenceTransformer, util from util import clean_fn def demo_vector_search(): from gensim.models import Word2Vec from gensim.utils import simple_preprocess import nltk.data import spacy # (might have to upgrade pip first...) # pip install --upgrade click # # python -m spacy download en_core_web_sm # python -m spacy download en_core_web_lg def is_complete_sentence(text): #text = text.text doc = nlp(text) sentences = list(doc.sents) if len(sentences) == 1 and text.strip() == sentences[0].text.strip(): return True return False sentences = [ "This is an example sentence.", "Here is another sentence for training." ] paragraph = """Financial Aid services are available in person! We are happy to assist you with your financial aid needs. If you are interested in visiting the office in person, please review the guidelines for visiting campus and schedule your appointment: Guidelines for In-Person Financial Aid Services Due to FERPA regulations, no student information will be given to anyone other than the student without authorization from the student. We continue to offer virtual services. Financial Aid staff may be reached by email, phone, text, and zoom! Please refer to the contact information and schedules below. Gavilan-WelcomeCenter_Peer_Mentors.jpg Do you need assistance filing the FAFSA or California Dream Act Application? Friendly and knowledgeable Peer Mentors are available to assist you virtually and in person! Details below for an online Zoom visit, phone call, or in-person visit with Peer Mentors. Monday - Friday 8am - 5pm, Student Center Join Zoom to Connect with a Peer Mentor Or call (669) 900-6833 and use meeting ID 408 848 4800 MicrosoftTeams-image.png Do you need assistance with an existing financial aid application, financial aid document submission, or review of your financial aid package? Schedule an in-person, phone, or zoom appointment with our Financial Aid counter. Mon - Thurs: 9am - 1:00pm, 2:00pm - 5:00pm Fri: 10am - 2pm Office: (408) 848-4727 Email: finaid@gavilan.edu Schedule an In-Person, Phone or Zoom Appointment""" tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') sentences1 = tokenizer.tokenize(paragraph) for i,s in enumerate(sentences1): print(i, "\t", s) print("\n\n") #nlp = spacy.load('en_core_web_sm') nlp = spacy.load('en_core_web_md') doc = nlp(paragraph) sentences2 = list(doc.sents) for i,s in enumerate(sentences2): t = re.sub(r'\n+',' ',s.text) is_sentence = 'yes' if is_complete_sentence(t) else 'no ' print(i, " ", is_sentence, " ", t) print("\n\n") #for text in sentences2: # print(text, "is a complete sentence?" , is_complete_sentence(text)) return tokenized_sentences = [simple_preprocess(s) for s in sentences] model = Word2Vec(tokenized_sentences, min_count=1, vector_size=100) example_word = "example" vector = model.wv[example_word] print(f"Vector for the word '{example_word}': {vector}") def makedir(): files = os.listdir('cache/crawl') #print(files) files.sort() for f in files: m = re.match(r'https?..www\.gavilan\.edu\+(.*)\.\w\w\w\w?\.txt$',f) if m: name = m.groups()[0] parts = name.split('+') print(parts) def manual_index(): files = os.listdir('cache/crawl') #print(files) ii = codecs.open('cache/crawl/index.html','w','utf-8') ii.write('

Site index

\n') files.sort() for f in files: m = re.match(r'https?..www\.gavilan\.edu\+(.*)\.\w\w\w\w?\.txt$',f) if m: name = m.groups()[0] parts = name.split('+') ii.write('
'+f+'\n') def my_site(): files = os.listdir('cache/crawl') output = [] files.sort() for f in files: m = re.match(r'https?..www\.gavilan\.edu\+(.*)\.\w\w\w\w?\.txt$',f) if m: name = m.groups()[0] parts = name.split('+') output.append(parts) return output ## TODO site scraper ## TODO find package that extracts text from web page ### TODO master list of what to index. ## TODO PDFs and DOCXs ## TODO fix urls w/ anchors def crawl(): import scrapy, logging from scrapy.crawler import CrawlerProcess logger = logging.getLogger() logger.setLevel(level=logging.CRITICAL) logging.basicConfig(level=logging.CRITICAL) logger.disabled = True avoid = ['ezproxy','community\.gavilan\.edu','archive\/tag','archive\/category', 'my\.gavilan\.edu', 'augusoft', 'eis-prod', 'ilearn\.gavilan', 'mailto', 'cgi-bin', 'edu\/old\/schedule', 'admit\/search\.php', 'GavilanTrusteeAreaMaps2022\.pdf', 'schedule\/2019', 'schedule\/2020', 'schedule\/2021', 'schedule\/2022', 'schedule\/previous', ] class MySpider(scrapy.Spider): name = 'myspider' #start_urls = ['https://gavilan.curriqunet.com/catalog/iq/1826'] start_urls = ['https://www.gavilan.edu'] """ logging.getLogger("scrapy").setLevel(logging.CRITICAL) logging.getLogger("scrapy.utils.log").setLevel(logging.CRITICAL) logging.getLogger("scrapy.extensions.telnet").setLevel(logging.CRITICAL) logging.getLogger("scrapy.middleware").setLevel(logging.CRITICAL) logging.getLogger("scrapy.core.engine").setLevel(logging.CRITICAL) logging.getLogger("scrapy.middleware").setLevel(logging.CRITICAL) logger.disabled = True""" def parse(self, response): print('visited:', repr(response.url), 'status:', response.status) done = 0 if re.search(r'\.pdf$', response.url): m = re.search(r'\/([^\/]+\.pdf)$', response.url) if m: print("saving to ", save_folder + '/' + clean_fn(response.url)) pdf_response = requests.get(response.url) with open(save_folder + '/' + clean_fn(response.url), 'wb') as f: f.write(pdf_response.content) text = extract_text(save_folder + '/' + clean_fn(response.url)) codecs.open(save_folder + '/' + clean_fn(response.url) + '.txt','w','utf-8').write(text) done = 1 for ext in ['doc','docx','ppt','pptx','rtf','xls','xlsx']: if re.search(r'\.'+ext+'$', response.url): m = re.search(r'\/([^\/]+\.'+ext+')$', response.url) if m: print("saving to ", save_folder + '/' + clean_fn(response.url)) pdf_response = requests.get(response.url) with open(save_folder + '/' + clean_fn(response.url), 'wb') as f: f.write(pdf_response.content) #text = extract_text(save_folder + '/' + clean_fn(response.url) + '.txt') pandoc_infile = save_folder + '/' + clean_fn(response.url) pandoc_outfile = save_folder + '/' + clean_fn(response.url) + '.html' print("pandoc in file: %s" % pandoc_infile) print("pandoc outfile: %s" % pandoc_outfile) pypandoc.convert_file(pandoc_infile, 'html', outputfile=pandoc_outfile, extra_args=['--from=%s' % ext, '--extract-media=%s' % save_folder + '/img' ]) pandoc_output = codecs.open(pandoc_outfile,'r','utf-8').read() txt_output = trafilatura.extract(pandoc_output,include_links=True, deduplicate=True, include_images=True, include_formatting=True) if txt_output: codecs.open(save_folder + '/' + clean_fn(response.url) + '.txt','w','utf-8').write(txt_output) done = 1 for ext in ['jpg','jpeg','gif','webp','png','svg','bmp','tiff','tif','ico']: if re.search(r'\.'+ext+'$', response.url): m = re.search(r'\/([^\/]+\.'+ext+')$', response.url) if m: print("saving to ", save_folder + '/img/' + clean_fn(response.url)) pdf_response = requests.get(response.url) with open(save_folder + '/img/' + clean_fn(response.url), 'wb') as f: f.write(pdf_response.content) done = 1 if not done: f_out = codecs.open(save_folder + '/' + clean_fn(response.url) + '.txt','w','utf-8') this_output = trafilatura.extract(response.text,include_links=True, deduplicate=True, include_images=True, include_formatting=True) if this_output: f_out.write(this_output) f_out.close() links = response.css('a::attr(href)').getall() # Follow each link and parse its contents for link in links: go = 1 full_link = response.urljoin(link) print('++++++ trying ', full_link) if not re.search(r'gavilan\.edu',full_link): go = 0 print('--- not gav edu') else: if re.search(r'hhh\.gavilan\.edu',full_link): pass elif not re.search(r'^https?:\/\/www\.gavilan\.edu',full_link): # need to add www to gavilan.edu m = re.search(r'^(https?:\/\/)gavilan\.edu(\/.*)$',full_link) if m: full_link = m.group(1) + 'www.' + m.group(2) for a in avoid: if re.search(a,full_link): go = 0 print('--- avoid ', a) if go: yield scrapy.Request(full_link, callback=self.parse, headers={"User-Agent": "Mozilla/5.0 (iPad; CPU OS 12_2 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148"}) else: print("------ avoiding ", full_link) # Instantiate a CrawlerProcess object process = CrawlerProcess() # Add the MySpider spider to the process process.crawl(MySpider) # Start the process logging.basicConfig(level=logging.CRITICAL) logging.getLogger('scrapy').propagate = False logging.getLogger("trafilatura").setLevel(logging.CRITICAL) logging.getLogger("trafilatura").propagate = False logging.getLogger("pdfminer").setLevel(logging.CRITICAL) logging.getLogger("pdfminer").propagate = False logging.getLogger("urllib3").setLevel(logging.CRITICAL) logging.getLogger("urllib3").propagate = False logging.basicConfig(level=logging.CRITICAL) process.start() save_folder = 'cache/crawl' clean_folder = 'cache/cleancrawl' def txt_clean_index(): files = os.listdir(save_folder) line_freq = defaultdict(int) # first pass for f in files: lines = codecs.open(save_folder + '/' + f,'r','utf-8').readlines() for L in lines: L = L.strip() line_freq[L] += 1 # second pass for f in files: print("\n\n",f) lines = codecs.open(save_folder + '/' + f,'r','utf-8').readlines() out = codecs.open(clean_folder + '/' + f,'w','utf-8') for L in lines: L = L.strip() if L in line_freq and line_freq[L] > 3: continue print(L) out.write(L + '\n') out.close() from whoosh import fields, columns from whoosh.index import create_in, open_dir from whoosh.fields import Schema, TEXT, ID, STORED, NUMERIC from whoosh.qparser import QueryParser from whoosh.analysis import StemmingAnalyzer def priority_from_url(url): priority = 1 # url is like this: https++www.gavilan.edu+news+Newsletters.php.txt m = re.search(r'gavilan\.edu\+(.*)\.\w\w\w\w?$',url) if m: address = m.group(1) parts = address.split('+') if parts[0] in ['accreditation','curriculum','senate','research','old','committee','board','styleguide']: priority += 20 if parts[0] in ['news','IT','HOM','administration']: priority += 10 if parts[0] == 'admit' and parts[1] == 'schedule': priority += 10 if 'accreditation' in parts: priority += 50 if re.search(r'hhh\.gavilan\.edu',url): priority += 100 priority *= len(parts) #print(priority, parts) else: priority *= 50 #print(priority, url) return priority def test_priority(): ff = os.listdir('cache/crawl') for f in ff: priority_from_url(f) def displayfile(f,aslist=0): lines = codecs.open('cache/crawl/' + f,'r','utf-8').readlines() lines = [L.strip() for L in lines] lines = [L for L in lines if L and not re.search(r'^\|$',L)] if aslist: return lines return "\n".join(lines) def any_match(line, words): # true if any of the words are in line for w in words: if re.search(w, line, re.IGNORECASE): return True return False def find_match_line(filename, query): q_words = query.split(" ") lines = codecs.open('cache/crawl/' + filename,'r','utf-8').readlines() lines = [L.strip() for L in lines] lines = [L for L in lines if L and not re.search(r'^\|$',L)] lines = [L for L in lines if any_match(L, q_words)] return "\n".join(lines) def search_index(): s = '' schema = Schema(url=STORED, title=TEXT(stored=True), content=TEXT, priority=fields.COLUMN(columns.NumericColumn("i"))) ix = open_dir("cache/searchindex") #with ix.reader() as reader: #print(reader.doc_count()) # number of documents in the index #print(reader.doc_frequency("content", "example")) # number of documents that contain the term "example" in the "content" field #print(reader.field_length("content")) # total number of terms in the "content" field #print(reader.term_info("content", "example")) # information about the term "example" in the "content" field #print(reader.dump()) # overview of the entire index while s != 'q': s = input("search or 'q' to quit: ") if s == 'q': return # Define the query parser for the index with ix.searcher() as searcher: query_parser = QueryParser("content", schema=schema) # Parse the user's query query = query_parser.parse(s) print(query) # Search the index for documents matching the query results = searcher.search(query, sortedby="priority") # Print the results i = 1 for result in results: print(i, result) # result["url"], result["content"]) print(find_match_line(result['url'], s)) print() i += 1 def create_search_index(): # Define the schema for the index stem_ana = StemmingAnalyzer() schema = Schema(url=STORED, title=TEXT(stored=True), content=TEXT, priority=fields.COLUMN(columns.NumericColumn("i"))) # Create a new index in the directory "myindex" ix = create_in("cache/searchindex", schema) # Open an existing index #ix = open_dir("cache/searchindex") # Define the writer for the index writer = ix.writer() # Index some documents files = os.listdir('cache/crawl') files.sort() for f in files: m = re.match(r'https?..www\.gavilan\.edu\+(.*)\.\w\w\w\w?\.txt$',f) if m: print(f) writer.add_document(url=f, title=m.group(1), content=displayfile(f), priority=priority_from_url(f)) writer.commit() from annoy import AnnoyIndex import random def test_embed(): model = SentenceTransformer('all-MiniLM-L6-v2') sample = "What is this world coming to? What happens in the data and the research?" embed = model.encode(sample) print("\nSample sentence:", sample) print("\nEmbedding:", embed) print("\nEmbedding size:", len(embed)) def create_embeddings(): model = SentenceTransformer('all-MiniLM-L6-v2') vecsize = 384 # sentence transformer embedding size t = AnnoyIndex(vecsize, 'angular') files = os.listdir('cache/crawl') output = [] # ['index', 'file','sentence'] index = 0 save_embeds = [] files.sort() for f in files: print(f) m = re.match(r'https?..www\.gavilan\.edu\+(.*)\.\w\w\w\w?\.txt$',f) if m: lines = displayfile(f,1) embeddings = model.encode(lines) print("\n-----", index, f) for sentence, embedding in zip(lines, embeddings): if len(sentence.split(' ')) > 5: print(index, "Sentence:", sentence) print(embedding[:8]) t.add_item(index, embedding) output.append( [index,f,sentence] ) index += 1 if index > 500: break t.build(30) # 30 trees t.save('cache/sentences.ann') pickle.dump( output, open( "cache/embedding_index.p", "wb" ) ) def search_embeddings(): f = 384 # sentence transformer embedding size n = 10 # how many results u = AnnoyIndex(f, 'angular') u.load('cache/sentences.ann') # super fast, will just mmap the file print(u.get_n_items(), "items in index") model = SentenceTransformer('all-MiniLM-L6-v2') search_index = pickle.load( open( "cache/embedding_index.p", "rb" ) ) print(search_index) s = '' while s != 'q': s = input("search or 'q' to quit: ") if s == 'q': return query_embedding = model.encode(s) results = u.get_nns_by_vector(query_embedding, n) # Print the top 5 results for i, r in enumerate(results): print(f'Top {i+1}: {r}, {search_index[r]}') #{file} - {sentence} - (Score: {score})') if __name__ == "__main__": print ('') options = { 1: ['demo vector search', demo_vector_search], 8: ['crawl',crawl], 9: ['clean text index', txt_clean_index], 10: ['make web dir struct', manual_index], 11: ['create search embeddings', create_embeddings], 12: ['create search index', create_search_index], 13: ['do an index search', search_index], 14: ['do a vector search', search_embeddings], 15: ['test priority', test_priority], 16: ['test embed', test_embed] } if len(sys.argv) > 1 and re.search(r'^\d+',sys.argv[1]): resp = int(sys.argv[1]) print("\n\nPerforming: %s\n\n" % options[resp][0]) else: print ('') for key in options: print(str(key) + '.\t' + options[key][0]) print('') resp = input('Choose: ') # Call the function in the options dict options[ int(resp)][1]() def try_clustering(df): from sklearn.cluster import KMeans df = df.drop(['code'], axis=1) kmeans = KMeans(n_clusters=4, random_state=0).fit(df) return kmeans.labels_ def nlp_sample(): from gensim import utils, corpora from nltk import stem stemmer = stem.porter.PorterStemmer() strings = [ "Human machine interface for lab abc computer applications", "A survey of user opinion of computer system response time", "The EPS user interface management system", "System and human system engineering testing of EPS", "Relation of user perceived response time to error measurement", "The generation of random binary unordered trees", "The intersection graph of paths in trees", "Graph minors IV Widths of trees and well quasi ordering", "Graph minors A survey", ] processed = [[stemmer.stem(y) for y in utils.simple_preprocess(x, min_len=4)] for x in strings] dictionary = corpora.Dictionary(processed) return dictionary